HypothesisTesting`
HypothesisTesting`

FRatioCI

FRatioCI[ratio,n,m]

gives a confidence interval based on an F-ratio distribution with n and m degrees of freedom.

Details

  • To use FRatioCI, you first need to load the Hypothesis Testing Package using Needs["HypothesisTesting`"].
  • FRatioCI[ratio,n,m] gives a confidence interval {min,max} for a ratio of variances estimated by ratio.
  • For confidence level , and where is the ^(th) quantile of an F-ratio distribution with n numerator and m denominator degrees of freedom.
  • FRatioCI is the confidence interval for a ratio of population variances based on sample variances estimated from samples of size n+1 and m+1.
  • The following option can be given:
  • ConfidenceLevel0.95probability associated with a confidence interval

Examples

open allclose all

Basic Examples  (1)

A 95% confidence interval based on an F-ratio distribution:

Options  (1)

ConfidenceLevel  (1)

A 99% confidence interval:

Wolfram Research (2007), FRatioCI, Wolfram Language function, https://reference.wolfram.com/language/HypothesisTesting/ref/FRatioCI.html.

Text

Wolfram Research (2007), FRatioCI, Wolfram Language function, https://reference.wolfram.com/language/HypothesisTesting/ref/FRatioCI.html.

CMS

Wolfram Language. 2007. "FRatioCI." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/HypothesisTesting/ref/FRatioCI.html.

APA

Wolfram Language. (2007). FRatioCI. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/HypothesisTesting/ref/FRatioCI.html

BibTeX

@misc{reference.wolfram_2021_fratioci, author="Wolfram Research", title="{FRatioCI}", year="2007", howpublished="\url{https://reference.wolfram.com/language/HypothesisTesting/ref/FRatioCI.html}", note=[Accessed: 24-May-2022 ]}

BibLaTeX

@online{reference.wolfram_2021_fratioci, organization={Wolfram Research}, title={FRatioCI}, year={2007}, url={https://reference.wolfram.com/language/HypothesisTesting/ref/FRatioCI.html}, note=[Accessed: 24-May-2022 ]}