HypothesisTesting`
HypothesisTesting`

# FRatioPValue

FRatioPValue[x,n,m]

gives the cumulative probability beyond x for the F-ratio distribution with n and m degrees of freedom.

# Details and Options

• To use FRatioPValue, you first need to load the Hypothesis Testing Package using Needs["HypothesisTesting`"].
• The one-sided value is CDF[FRatioDistribution[n,m],x] if x is less than the median of the Fratio distribution with n and m degrees of freedom, and 1-CDF[FRatioDistribution[n,m],x] otherwise.
• The two-sided value is twice the one-sided value.
• The following option can be given:
•  TwoSided False whether to perform a two-sided test

# Examples

open allclose all

## Basic Examples(1)

The value for 10 in an Fratio distribution with 2 and 5 degrees of freedom:

## Options(1)

### TwoSided(1)

A twosided value:

Wolfram Research (2007), FRatioPValue, Wolfram Language function, https://reference.wolfram.com/language/HypothesisTesting/ref/FRatioPValue.html.

#### Text

Wolfram Research (2007), FRatioPValue, Wolfram Language function, https://reference.wolfram.com/language/HypothesisTesting/ref/FRatioPValue.html.

#### CMS

Wolfram Language. 2007. "FRatioPValue." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/HypothesisTesting/ref/FRatioPValue.html.

#### APA

Wolfram Language. (2007). FRatioPValue. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/HypothesisTesting/ref/FRatioPValue.html

#### BibTeX

@misc{reference.wolfram_2024_fratiopvalue, author="Wolfram Research", title="{FRatioPValue}", year="2007", howpublished="\url{https://reference.wolfram.com/language/HypothesisTesting/ref/FRatioPValue.html}", note=[Accessed: 15-June-2024 ]}

#### BibLaTeX

@online{reference.wolfram_2024_fratiopvalue, organization={Wolfram Research}, title={FRatioPValue}, year={2007}, url={https://reference.wolfram.com/language/HypothesisTesting/ref/FRatioPValue.html}, note=[Accessed: 15-June-2024 ]}