HypothesisTesting`
HypothesisTesting`

FRatioPValue

FRatioPValue[x,n,m]

gives the cumulative probability beyond x for the F-ratio distribution with n and m degrees of freedom.

Details and Options

  • To use FRatioPValue, you first need to load the Hypothesis Testing Package using Needs["HypothesisTesting`"].
  • The one-sided value is CDF[FRatioDistribution[n,m],x] if x is less than the median of the Fratio distribution with n and m degrees of freedom, and 1-CDF[FRatioDistribution[n,m],x] otherwise.
  • The two-sided value is twice the one-sided value.
  • The following option can be given:
  • TwoSided Falsewhether to perform a two-sided test

Examples

open allclose all

Basic Examples  (1)

The value for 10 in an Fratio distribution with 2 and 5 degrees of freedom:

Options  (1)

TwoSided  (1)

A twosided value:

Wolfram Research (2007), FRatioPValue, Wolfram Language function, https://reference.wolfram.com/language/HypothesisTesting/ref/FRatioPValue.html.

Text

Wolfram Research (2007), FRatioPValue, Wolfram Language function, https://reference.wolfram.com/language/HypothesisTesting/ref/FRatioPValue.html.

CMS

Wolfram Language. 2007. "FRatioPValue." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/HypothesisTesting/ref/FRatioPValue.html.

APA

Wolfram Language. (2007). FRatioPValue. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/HypothesisTesting/ref/FRatioPValue.html

BibTeX

@misc{reference.wolfram_2024_fratiopvalue, author="Wolfram Research", title="{FRatioPValue}", year="2007", howpublished="\url{https://reference.wolfram.com/language/HypothesisTesting/ref/FRatioPValue.html}", note=[Accessed: 22-May-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_fratiopvalue, organization={Wolfram Research}, title={FRatioPValue}, year={2007}, url={https://reference.wolfram.com/language/HypothesisTesting/ref/FRatioPValue.html}, note=[Accessed: 22-May-2024 ]}