KendallRankCorrelation[xlist,ylist]
gives Kendall's rank correlation coefficient for the real-valued vectors xlist and ylist.


KendallRankCorrelation
KendallRankCorrelation[xlist,ylist]
gives Kendall's rank correlation coefficient for the real-valued vectors xlist and ylist.
Details and Options
- To use KendallRankCorrelation, you first need to load the Multivariate Statistics Package using Needs["MultivariateStatistics`"].
- Kendall's rank correlation coefficient is a measure of association based on the relative order of consecutive elements in the two lists.
- Kendall's rank correlation coefficient between
and
is given by
, where
is the number of concordant pairs of observations,
is the number of discordant pairs,
is the number of ties involving only the
variable, and
is the number of ties involving only the
variable.
- A concordant pair of observations
and
is one such that both
and
or both
and
. A discordant pair of observations is one such that
and
or
and
.
- The arguments xlist and ylist can be any real‐valued vectors of equal length.
See Also
Tech Notes
Related Guides
Text
Wolfram Research (2007), KendallRankCorrelation, Wolfram Language function, https://reference.wolfram.com/language/MultivariateStatistics/ref/KendallRankCorrelation.html.
CMS
Wolfram Language. 2007. "KendallRankCorrelation." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/MultivariateStatistics/ref/KendallRankCorrelation.html.
APA
Wolfram Language. (2007). KendallRankCorrelation. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/MultivariateStatistics/ref/KendallRankCorrelation.html
BibTeX
@misc{reference.wolfram_2025_kendallrankcorrelation, author="Wolfram Research", title="{KendallRankCorrelation}", year="2007", howpublished="\url{https://reference.wolfram.com/language/MultivariateStatistics/ref/KendallRankCorrelation.html}", note=[Accessed: 06-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_kendallrankcorrelation, organization={Wolfram Research}, title={KendallRankCorrelation}, year={2007}, url={https://reference.wolfram.com/language/MultivariateStatistics/ref/KendallRankCorrelation.html}, note=[Accessed: 06-August-2025]}