MultiPoissonDistribution[μ0,μ]
represents a multivariate Poisson distribution with mean vector μ0+μ.


MultiPoissonDistribution
MultiPoissonDistribution[μ0,μ]
represents a multivariate Poisson distribution with mean vector μ0+μ.
Details and Options
- To use MultiPoissonDistribution, you first need to load the Multivariate Statistics Package using Needs["MultivariateStatistics`"].
- The multivariate Poisson distribution MultiPoissonDistribution[μ0,μ] with μ={μ1,μ2,…} is the distribution followed by a Poisson with mean μ0 summed with a vector of independent Poissons with means μ1, μ2, ….
- The parameter μ0 and the elements of the vector μ can be any positive numbers.
- MultiPoissonDistribution can be used with such functions as Mean, PDF, and RandomInteger.
Examples
open all close allBasic Examples (3)
See Also
Tech Notes
Related Guides
Text
Wolfram Research (2007), MultiPoissonDistribution, Wolfram Language function, https://reference.wolfram.com/language/MultivariateStatistics/ref/MultiPoissonDistribution.html.
CMS
Wolfram Language. 2007. "MultiPoissonDistribution." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/MultivariateStatistics/ref/MultiPoissonDistribution.html.
APA
Wolfram Language. (2007). MultiPoissonDistribution. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/MultivariateStatistics/ref/MultiPoissonDistribution.html
BibTeX
@misc{reference.wolfram_2025_multipoissondistribution, author="Wolfram Research", title="{MultiPoissonDistribution}", year="2007", howpublished="\url{https://reference.wolfram.com/language/MultivariateStatistics/ref/MultiPoissonDistribution.html}", note=[Accessed: 18-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_multipoissondistribution, organization={Wolfram Research}, title={MultiPoissonDistribution}, year={2007}, url={https://reference.wolfram.com/language/MultivariateStatistics/ref/MultiPoissonDistribution.html}, note=[Accessed: 18-August-2025]}