AlgebraicNumberDenominator

AlgebraicNumberDenominator[a]

给出使得 n a 为代数整数的最小正整数 n.

范例

打开所有单元关闭所有单元

基本范例  (2)

范围  (3)

根表达式:

RootAlgebraicNumber 对象:

AlgebraicNumberDenominator 自动线性作用于列表:

应用  (1)

以代数整数 α 和一个整数 n 的商 α/n 的形式表示 1/(1+)

属性和关系  (2)

对一个代数整数 n 而言,其分母为 1:

将一个代数数和其分母相乘得到一个代数整数:

可能存在的问题  (1)

参数必须是一个代数数:

Wolfram Research (2007),AlgebraicNumberDenominator,Wolfram 语言函数,https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html.

文本

Wolfram Research (2007),AlgebraicNumberDenominator,Wolfram 语言函数,https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html.

CMS

Wolfram 语言. 2007. "AlgebraicNumberDenominator." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html.

APA

Wolfram 语言. (2007). AlgebraicNumberDenominator. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html 年

BibTeX

@misc{reference.wolfram_2024_algebraicnumberdenominator, author="Wolfram Research", title="{AlgebraicNumberDenominator}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html}", note=[Accessed: 03-December-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_algebraicnumberdenominator, organization={Wolfram Research}, title={AlgebraicNumberDenominator}, year={2007}, url={https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html}, note=[Accessed: 03-December-2024 ]}