Antihermitian[{1,2}]
represents the symmetry of an antihermitian matrix.


Antihermitian
Antihermitian[{1,2}]
represents the symmetry of an antihermitian matrix.
Details

- An antihermitian matrix is also known as a skew-Hermitian matrix.
- A square matrix m is antihermitian if ConjugateTranspose[m]-m.
Examples
open all close allBasic Examples (2)
Scope (2)
Use Antihermitian[…] as a symmetry for matrix domains:
Use the specification to simplify symbolic matrix expressions:
Applications (1)
Properties & Relations (2)
Antihermitian[slots] for an array of real entries automatically converts into Antisymmetric[slots]:
The diagonal elements of an antihermitian matrix are pure imaginary:
Tech Notes
Related Guides
History
Text
Wolfram Research (2020), Antihermitian, Wolfram Language function, https://reference.wolfram.com/language/ref/Antihermitian.html.
CMS
Wolfram Language. 2020. "Antihermitian." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/Antihermitian.html.
APA
Wolfram Language. (2020). Antihermitian. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Antihermitian.html
BibTeX
@misc{reference.wolfram_2025_antihermitian, author="Wolfram Research", title="{Antihermitian}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/Antihermitian.html}", note=[Accessed: 07-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_antihermitian, organization={Wolfram Research}, title={Antihermitian}, year={2020}, url={https://reference.wolfram.com/language/ref/Antihermitian.html}, note=[Accessed: 07-August-2025]}