WOLFRAM

ApartSquareFree
ApartSquareFree

rewrites a rational expression as a sum of terms whose denominators are powers of square-free polynomials.

ApartSquareFree[expr,var]

treats all variables other than var as constants.

Details and Options

  • ApartSquareFree gives the square-free partial fraction decomposition of a rational expression.
  • ApartSquareFree[expr,Trig->True] treats trigonometric functions as rational functions of exponentials, and manipulates them accordingly.
  • ApartSquareFree automatically threads over lists in expr, as well as equations, inequalities, and logic functions.

Examples

open allclose all

Basic Examples  (1)Summary of the most common use cases

Decompose into partial fractions using square-free factorization of the denominator:

Out[1]=1

Decompose into partial fractions using full factorization of the denominator:

Out[2]=2

Scope  (7)Survey of the scope of standard use cases

Basic Uses  (5)

Decompose a rational function into partial fractions using square-free factorization:

Out[1]=1

ApartSquareFree can handle symbolic parameters:

Out[1]=1

Treat as the main variable and as a constant:

Out[1]=1

Treat as the main variable and as a constant:

Out[2]=2

Here ApartSquareFree picks as the main variable and treats as a constant:

Out[3]=3

ApartSquareFree can handle non-polynomial expressions:

Out[1]=1

ApartSquareFree threads over equations and inequalities:

Out[1]=1

Advanced Uses  (2)

Compute the square-free partial fraction representation over the integers modulo :

Out[13]=13

Compute the square-free partial fraction representation following common trigonometric identities:

Out[1]=1

Options  (2)Common values & functionality for each option

Modulus  (1)

Partial fraction decomposition over the rationals:

Out[1]=1

Partial fraction decomposition over the integers modulo 2:

Out[2]=2

Trig  (1)

Partial fraction decomposition of a trigonometric expression:

Out[1]=1

Properties & Relations  (1)Properties of the function, and connections to other functions

Together acts as an inverse of ApartSquareFree:

Out[1]=1
Out[2]=2
Wolfram Research (2007), ApartSquareFree, Wolfram Language function, https://reference.wolfram.com/language/ref/ApartSquareFree.html.
Wolfram Research (2007), ApartSquareFree, Wolfram Language function, https://reference.wolfram.com/language/ref/ApartSquareFree.html.

Text

Wolfram Research (2007), ApartSquareFree, Wolfram Language function, https://reference.wolfram.com/language/ref/ApartSquareFree.html.

Wolfram Research (2007), ApartSquareFree, Wolfram Language function, https://reference.wolfram.com/language/ref/ApartSquareFree.html.

CMS

Wolfram Language. 2007. "ApartSquareFree." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ApartSquareFree.html.

Wolfram Language. 2007. "ApartSquareFree." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ApartSquareFree.html.

APA

Wolfram Language. (2007). ApartSquareFree. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ApartSquareFree.html

Wolfram Language. (2007). ApartSquareFree. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ApartSquareFree.html

BibTeX

@misc{reference.wolfram_2025_apartsquarefree, author="Wolfram Research", title="{ApartSquareFree}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/ApartSquareFree.html}", note=[Accessed: 20-April-2025 ]}

@misc{reference.wolfram_2025_apartsquarefree, author="Wolfram Research", title="{ApartSquareFree}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/ApartSquareFree.html}", note=[Accessed: 20-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_apartsquarefree, organization={Wolfram Research}, title={ApartSquareFree}, year={2007}, url={https://reference.wolfram.com/language/ref/ApartSquareFree.html}, note=[Accessed: 20-April-2025 ]}

@online{reference.wolfram_2025_apartsquarefree, organization={Wolfram Research}, title={ApartSquareFree}, year={2007}, url={https://reference.wolfram.com/language/ref/ApartSquareFree.html}, note=[Accessed: 20-April-2025 ]}