

Exponent
Examples
open all close allScope (4)
Options (2)
Properties & Relations (2)
The number of complex roots of a polynomial is equal to its degree:
Use Solve to find the roots:
Length of the CoefficientList of a polynomial is one more than its degree:
Possible Issues (1)
Exponent is purely syntactical; it does not attempt to recognize zero coefficients:
See Also
Coefficient CoefficientList Cases IntegerExponent CountRoots NumberFieldSignature
Function Repository: RootDegree
Related Guides
History
Introduced in 1988 (1.0) | Updated in 1996 (3.0) ▪ 2003 (5.0)
Text
Wolfram Research (1988), Exponent, Wolfram Language function, https://reference.wolfram.com/language/ref/Exponent.html (updated 2003).
CMS
Wolfram Language. 1988. "Exponent." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2003. https://reference.wolfram.com/language/ref/Exponent.html.
APA
Wolfram Language. (1988). Exponent. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Exponent.html
BibTeX
@misc{reference.wolfram_2025_exponent, author="Wolfram Research", title="{Exponent}", year="2003", howpublished="\url{https://reference.wolfram.com/language/ref/Exponent.html}", note=[Accessed: 10-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_exponent, organization={Wolfram Research}, title={Exponent}, year={2003}, url={https://reference.wolfram.com/language/ref/Exponent.html}, note=[Accessed: 10-August-2025]}