gives the Fresnel auxiliary function .


  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • TemplateBox[{z}, FresnelF]=(1/2-TemplateBox[{z}, FresnelS]) cos(pi z^2/2)-(1/2-TemplateBox[{z}, FresnelC]) sin(pi z^2/2).
  • FresnelF[z] is an entire function of z with no branch cut discontinuities.
  • For certain special arguments, FresnelF automatically evaluates to exact values.
  • FresnelF can be evaluated to arbitrary numerical precision.
  • FresnelF automatically threads over lists.


open allclose all

Basic Examples  (4)

Evaluate numerically:

Plot over a subset of the reals:

Plot over a subset of the complexes:

Series expansion at the origin:

Scope  (17)

Numerical Evaluation  (3)

Evaluate to high precision:

Precision of the output tracks the precision of the input:

Evaluate for complex argument:

Evaluate FresnelF efficiently at high precision:

Specific Values  (3)

Value at a fixed point:

Values at infinity:

Find a local maximum as a root of (dTemplateBox[{x}, FresnelF])/(dx)=0:

Visualization  (2)

Plot the FresnelF function:

Plot the real part of TemplateBox[{{x, +, {ⅈ,  , y}}}, FresnelF]:

Plot the imaginary part of TemplateBox[{{x, +, {ⅈ,  , y}}}, FresnelF]:

Differentiation and Integration  (3)

First derivative:

Higher derivatives:

Approximation of the definite integral of FresnelF:

Series Expansions  (2)

Taylor expansion for FresnelF:

Plot the first three approximations for FresnelF around :

Taylor expansion for FresnelF at a generic point:

Function Identities and Simplifications  (2)

Primary definition:

Argument simplifications:

Other Features  (2)

FresnelF threads elementwise over lists and matrices:

TraditionalForm typesetting:

Applications  (1)

Interference pattern at the edge of a shadow:

Wolfram Research (2014), FresnelF, Wolfram Language function,


Wolfram Research (2014), FresnelF, Wolfram Language function,


@misc{reference.wolfram_2020_fresnelf, author="Wolfram Research", title="{FresnelF}", year="2014", howpublished="\url{}", note=[Accessed: 12-April-2021 ]}


@online{reference.wolfram_2020_fresnelf, organization={Wolfram Research}, title={FresnelF}, year={2014}, url={}, note=[Accessed: 12-April-2021 ]}


Wolfram Language. 2014. "FresnelF." Wolfram Language & System Documentation Center. Wolfram Research.


Wolfram Language. (2014). FresnelF. Wolfram Language & System Documentation Center. Retrieved from