gives a MeshRegion whose gradient best fits the normals at points p1,p2,.

Details and Options


open allclose all

Basic Examples  (2)

Reconstruct a sphere from random points:

An oriented point sample of a Beethoven sculpture:

3D reconstructed mesh:

Scope  (2)

GradientFittedMesh works on coordinates:

It is equivalent to points without normals:

GradientFittedMesh works on oriented points:

Options  (2)

VertexNormals  (1)

Specify coordinate orientations using VertexNormals:

This is equivalent to passing oriented points:

PerformanceGoal  (1)

Generate a higher-quality mesh:

Emphasize performance, possibly at the cost of quality:

Applications  (1)

Reconstruct a mesh from oriented points in :

The reconstructed mesh:

Basic properties:

Reconstructed meshes are bounded:

Find its area and centroid:

Possible Issues  (1)

GradientFittedMesh only works on 3D points:

Wolfram Research (2021), GradientFittedMesh, Wolfram Language function,


Wolfram Research (2021), GradientFittedMesh, Wolfram Language function,


Wolfram Language. 2021. "GradientFittedMesh." Wolfram Language & System Documentation Center. Wolfram Research.


Wolfram Language. (2021). GradientFittedMesh. Wolfram Language & System Documentation Center. Retrieved from


@misc{reference.wolfram_2024_gradientfittedmesh, author="Wolfram Research", title="{GradientFittedMesh}", year="2021", howpublished="\url{}", note=[Accessed: 16-June-2024 ]}


@online{reference.wolfram_2024_gradientfittedmesh, organization={Wolfram Research}, title={GradientFittedMesh}, year={2021}, url={}, note=[Accessed: 16-June-2024 ]}