WOLFRAM

GraphLinkEfficiency
GraphLinkEfficiency

gives the link efficiency of the graph g.

GraphLinkEfficiency[{vw,}]

uses rules vw to specify the graph g.

Details

Examples

open allclose all

Basic Examples  (2)Summary of the most common use cases

Find the link efficiency in the graph:

Out[3]=3

Graph link efficiency distribution of the WattsStrogatz graph model:

Out[2]=2

Scope  (4)Survey of the scope of standard use cases

GraphLinkEfficiency works with undirected graphs:

Out[3]=3

Directed graphs:

Out[1]=1

Use rules to specify the graph:

Out[1]=1

GraphLinkEfficiency works with large graphs:

Out[2]=2

Applications  (2)Sample problems that can be solved with this function

Find how tightly connected the overground line of the London Underground is with respect to the number of lines between stations:

Out[6]=6

Analyze the distribution of link efficiency in the WattsStrogatz graph model:

Out[2]=2

Distribution of link efficiency:

Out[4]=4

Expected value:

Out[5]=5

Properties & Relations  (5)Properties of the function, and connections to other functions

GraphLinkEfficiency is related to MeanGraphDistance:

Out[1]=1
Out[2]=2
Out[3]=3

The GraphLinkEfficiency is always less than 1:

Out[1]=1

The GraphLinkEfficiency of a complete graph is close to 1:

Out[1]=1
Out[2]=2

Test if a graph is complete using CompleteGraphQ:

Out[3]=3

The GraphLinkEfficiency of a path graph of length 1 is 0:

Out[1]=1
Out[2]=2

The GraphLinkEfficiency of a disconnected graph is -:

Out[1]=1
Out[2]=2

Use ConnectedGraphQ to test for connected graphs:

Out[3]=3

Possible Issues  (1)Common pitfalls and unexpected behavior

Self-loops are ignored:

Out[2]=2
Out[3]=3
Wolfram Research (2012), GraphLinkEfficiency, Wolfram Language function, https://reference.wolfram.com/language/ref/GraphLinkEfficiency.html (updated 2015).
Wolfram Research (2012), GraphLinkEfficiency, Wolfram Language function, https://reference.wolfram.com/language/ref/GraphLinkEfficiency.html (updated 2015).

Text

Wolfram Research (2012), GraphLinkEfficiency, Wolfram Language function, https://reference.wolfram.com/language/ref/GraphLinkEfficiency.html (updated 2015).

Wolfram Research (2012), GraphLinkEfficiency, Wolfram Language function, https://reference.wolfram.com/language/ref/GraphLinkEfficiency.html (updated 2015).

CMS

Wolfram Language. 2012. "GraphLinkEfficiency." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/GraphLinkEfficiency.html.

Wolfram Language. 2012. "GraphLinkEfficiency." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/GraphLinkEfficiency.html.

APA

Wolfram Language. (2012). GraphLinkEfficiency. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GraphLinkEfficiency.html

Wolfram Language. (2012). GraphLinkEfficiency. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GraphLinkEfficiency.html

BibTeX

@misc{reference.wolfram_2025_graphlinkefficiency, author="Wolfram Research", title="{GraphLinkEfficiency}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/GraphLinkEfficiency.html}", note=[Accessed: 22-April-2025 ]}

@misc{reference.wolfram_2025_graphlinkefficiency, author="Wolfram Research", title="{GraphLinkEfficiency}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/GraphLinkEfficiency.html}", note=[Accessed: 22-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_graphlinkefficiency, organization={Wolfram Research}, title={GraphLinkEfficiency}, year={2015}, url={https://reference.wolfram.com/language/ref/GraphLinkEfficiency.html}, note=[Accessed: 22-April-2025 ]}

@online{reference.wolfram_2025_graphlinkefficiency, organization={Wolfram Research}, title={GraphLinkEfficiency}, year={2015}, url={https://reference.wolfram.com/language/ref/GraphLinkEfficiency.html}, note=[Accessed: 22-April-2025 ]}