represents a HannPoisson window function of x.


uses the parameter α.



open allclose all

Basic Examples  (3)

Shape of a 1D HannPoisson window:

Shape of a 2D HannPoisson window:

Extract the continuous function representing the HannPoisson window:

Parameterized HannPoisson window:

Scope  (6)

Shape of a 1D HannPoisson window using a specified parameter:

Variation of the shape as a function of the parameter α:

Translated and dilated HannPoisson window:

2D HannPoisson window with a circular support:

Evaluate numerically:

Discrete HannPoisson window of length 15:

Discrete 15×10 2D HannPoisson window:

Applications  (3)

Create a moving average filter of length 11:

Smooth the filter using a HannPoisson window:

Log-magnitude plot of the frequency spectrum of the filters:

Use a window specification to calculate sample PowerSpectralDensity:

Calculate the spectrum:

Compare to spectral density calculated without a windowing function:

The plot shows that window smooths the spectral density:

Compare to the theoretical spectral density of the process:

Use a window specification for time series estimation:

Specify window for spectral estimator:

Properties & Relations  (3)

HannPoissonWindow[x,0] is equivalent to a Hann window:

The area under the HannPoisson window:

Normalize to create a window with unit area:

Fourier transform of the HannPoisson window:

Power spectrum of the HannPoisson window:

Possible Issues  (1)

2D sampling of HannPoisson window will use a different parameter for each row of samples when passed as a symbol to Array:

Use a pure function instead:

Introduced in 2012