JacobiZN
JacobiZN[u,m]
gives the Jacobi zeta function .
Details
- Mathematical function, suitable for both symbolic and numerical manipulation.
- .
- Argument conventions for elliptic integrals are discussed in "Elliptic Integrals and Elliptic Functions".
- is a singly periodic function in with the period , where is the elliptic integral EllipticK. »
- JacobiZN is a meromorphic function in both arguments.
- For certain special arguments, JacobiZN automatically evaluates to exact values.
- JacobiZN can be evaluated to arbitrary numerical precision.
- JacobiZN automatically threads over lists.
Examples
open allclose allScope (24)
Numerical Evaluation (5)
The precision of the output tracks the precision of the input:
Evaluate for complex arguments:
Evaluate JacobiZN efficiently at higher precision:
Compute average case statistical intervals using Around:
Compute the elementwise values of an array:
Or compute the matrix JacobiZN function using MatrixFunction:
Specific Values (3)
Visualization (3)
Function Properties (2)
Differentiation (3)
Integration (1)
Indefinite integral of JacobiZN:
Series Expansions (3)
Function Identities and Simplifications (2)
Function Representations (2)
Applications (4)
Express derivatives of Neville theta functions:
Supersymmetric zero‐energy solution of the Schrödinger equation in a periodic potential:
Define a solution using JacobiZN:
Check that the function defined previously solves the Schrödinger equation:
Plot the superpotential, the potential and the wavefunction:
Define a conformal map using JacobiZN:
Parameterization of genus‐1 constant mean-curvature Wente torus:
Properties & Relations (2)
Text
Wolfram Research (2020), JacobiZN, Wolfram Language function, https://reference.wolfram.com/language/ref/JacobiZN.html.
CMS
Wolfram Language. 2020. "JacobiZN." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/JacobiZN.html.
APA
Wolfram Language. (2020). JacobiZN. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/JacobiZN.html