Elliptic Functions
With careful standardization of argument conventions, the Wolfram Language provides full coverage of all standard types of elliptic functions, with arbitrary-precision numerical evaluation for complex values of all parameters, as well as extensive symbolic transformations and simplifications.
Jacobi Elliptic Functions
JacobiSN ▪ JacobiCN ▪ JacobiDN ▪ JacobiCD ▪ JacobiCS ▪ JacobiDC ▪ JacobiDS ▪ JacobiNC ▪ JacobiND ▪ JacobiNS ▪ JacobiSC ▪ JacobiSD ▪ JacobiEpsilon ▪ JacobiZN
Inverse Jacobi Elliptic Functions
InverseJacobiSN ▪ InverseJacobiCN ▪ InverseJacobiDN ▪ InverseJacobiCD ▪ InverseJacobiCS ▪ InverseJacobiDC ▪ InverseJacobiDS ▪ InverseJacobiNC ▪ InverseJacobiND ▪ InverseJacobiNS ▪ InverseJacobiSC ▪ InverseJacobiSD
Weierstrass Elliptic Functions
WeierstrassP ▪ WeierstrassPPrime ▪ WeierstrassSigma ▪ WeierstrassZeta
WeierstrassHalfPeriodW1 ▪ WeierstrassHalfPeriodW2 ▪ WeierstrassHalfPeriodW3 ▪ WeierstrassE1 ▪ WeierstrassE2 ▪ WeierstrassE3 ▪ WeierstrassEta1 ▪ WeierstrassEta2 ▪ WeierstrassEta3 ▪ WeierstrassInvariantG2 ▪ WeierstrassInvariantG3
Inverse Weierstrass Elliptic Functions
Theta Functions
EllipticTheta ▪ EllipticThetaPrime ▪ SiegelTheta
NevilleThetaC ▪ NevilleThetaD ▪ NevilleThetaN ▪ NevilleThetaS
Elliptic Exponential Functions
EllipticExp ▪ EllipticExpPrime ▪ EllipticLog
JacobiAmplitude — convert from argument and parameter to amplitude
EllipticNomeQ — convert from parameter to nome
InverseEllipticNomeQ — convert from nome to parameter
WeierstrassInvariants — convert from half-periods to invariants
WeierstrassHalfPeriods — convert from invariants to half-periods