gives the value e2 of the Weierstrass elliptic function at the half-period TemplateBox[{{g, _, 2}, {g, _, 3}}, WeierstrassHalfPeriodW2].


  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • WeierstrassE2 can be evaluated to arbitrary numerical precision.


open allclose all

Basic Examples  (3)

WeierstrassE2 represents the value of WeierstrassP at its second half-period ω2:

Evaluate numerically:

Plot the real and imaginary parts of the e2:

Scope  (3)

Evaluate to arbitrary precision:

Precision of the output tracks the precision of the input:

TraditionalForm formatting:

Applications  (1)

Find the modulus corresponding to the elliptic curve, specified by Weierstrass invariants:

Compute the modulus alternatively:

Properties & Relations  (3)

Values of WeierstrassP at half-periods are the roots of the defining polynomial:

Values of WeierstrassP at half-periods are not linearly independent:

This identity holds for all arguments:

Symmetric polynomials evaluated at values of WeierstrassP at half-periods yield WeierstrassInvariants:

Introduced in 2017