# WeierstrassE2

WeierstrassE2[{g2,g3}]

gives the value e2 of the Weierstrass elliptic function at the half-period .

# Details

• Mathematical function, suitable for both symbolic and numerical manipulation.
• WeierstrassE2 can be evaluated to arbitrary numerical precision.

# Examples

open allclose all

## Basic Examples(3)

WeierstrassE2 represents the value of WeierstrassP at its second half-period ω2:

Evaluate numerically:

Plot the real and imaginary parts of e2:

## Scope(7)

Evaluate to arbitrary precision:

The precision of the output tracks the precision of the input:

Evaluate symbolically for the equianharmonic case:

Evaluate symbolically for the lemniscatic case:

WeierstrassE2 has both singularities and discontinuities:

WeierstrassE2 is neither non-negative nor non-positive:

WeierstrassE2 is neither convex nor concave:

## Applications(1)

Find the elliptic modulus m corresponding to an elliptic curve specified by its Weierstrass invariants:

Compute the modulus using an alternative formula:

## Properties & Relations(3)

Values of WeierstrassP at its half-periods are the roots of the defining polynomial:

Values of WeierstrassP at its half-periods are not linearly independent:

This identity holds for all arguments:

The elementary symmetric polynomials evaluated at the values of WeierstrassP at half-periods yield WeierstrassInvariants (the Vieta relations):

Wolfram Research (2017), WeierstrassE2, Wolfram Language function, https://reference.wolfram.com/language/ref/WeierstrassE2.html.

#### Text

Wolfram Research (2017), WeierstrassE2, Wolfram Language function, https://reference.wolfram.com/language/ref/WeierstrassE2.html.

#### CMS

Wolfram Language. 2017. "WeierstrassE2." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WeierstrassE2.html.

#### APA

Wolfram Language. (2017). WeierstrassE2. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WeierstrassE2.html

#### BibTeX

@misc{reference.wolfram_2023_weierstrasse2, author="Wolfram Research", title="{WeierstrassE2}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/WeierstrassE2.html}", note=[Accessed: 01-October-2023 ]}

#### BibLaTeX

@online{reference.wolfram_2023_weierstrasse2, organization={Wolfram Research}, title={WeierstrassE2}, year={2017}, url={https://reference.wolfram.com/language/ref/WeierstrassE2.html}, note=[Accessed: 01-October-2023 ]}