WeierstrassHalfPeriodW2
WeierstrassHalfPeriodW2[{g2,g3}]
gives the half-period ω2 for the Weierstrass elliptic functions corresponding to the invariants {g2,g3}.
Details
- Mathematical function, suitable for both symbolic and numerical manipulation.
- The half-periods define the fundamental period parallelogram for the Weierstrass elliptic functions.
- WeierstrassHalfPeriodW2 can be evaluated to arbitrary precision.
- WeierstrassHalfPeriodW2 can be used with CenteredInterval objects. »
Examples
open allclose allBasic Examples (3)
Scope (8)
Evaluate to arbitrary precision:
The precision of the output tracks the precision of the input:
Evaluate symbolically for the equianharmonic case:
Evaluate symbolically for the lemniscatic case:
WeierstrassHalfPeriodW2 has both singularities and discontinuities:
WeierstrassHalfPeriodW2 is neither non-negative nor non-positive:
WeierstrassHalfPeriodW2 is neither convex nor concave:
WeierstrassHalfPeriodW2 can be used with CenteredInterval objects:
TraditionalForm formatting:
Properties & Relations (4)
Up to a change in sign, the half-period is equal to the sum of the half-periods and :
WeierstrassP is periodic with periods equal to twice the half-periods:
The half-periods , and of Weierstrass elliptic functions are not linearly independent:
This identity holds for all arguments:
WeierstrassHalfPeriodW2 gives a zero of WeierstrassPPrime in the lattice cell:
Text
Wolfram Research (2017), WeierstrassHalfPeriodW2, Wolfram Language function, https://reference.wolfram.com/language/ref/WeierstrassHalfPeriodW2.html (updated 2023).
CMS
Wolfram Language. 2017. "WeierstrassHalfPeriodW2." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/WeierstrassHalfPeriodW2.html.
APA
Wolfram Language. (2017). WeierstrassHalfPeriodW2. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WeierstrassHalfPeriodW2.html