WeierstrassHalfPeriodW1

WeierstrassHalfPeriodW1[{g2,g3}]

gives the half-period ω1 for Weierstrass elliptic functions corresponding to the invariants {g2,g3}.

Details

Examples

open allclose all

Basic Examples  (3)

Evaluate numerically:

Plot the real and imaginary parts of the first half-period:

Compute the value of the Weierstrass function at the first half-period:

Scope  (8)

Evaluate to arbitrary precision:

The precision of the output tracks the precision of the input:

Evaluate symbolically for the equianharmonic case:

Evaluate symbolically for the lemniscatic case:

WeierstrassHalfPeriodW1 has both singularities and discontinuities:

WeierstrassHalfPeriodW1 is neither non-negative nor non-positive:

However, it is positive in the first quadrant:

WeierstrassHalfPeriodW1 is neither convex nor concave:

WeierstrassHalfPeriodW1 can be used with CenteredInterval objects:

TraditionalForm formatting:

Applications  (3)

Plot WeierstrassP over its real period:

Compute the elliptic modulus corresponding to the pair of Weierstrass invariants and :

Compute the first lattice root TemplateBox[{{g, _, 2}, {g, _, 3}}, WeierstrassE1]:

Compare with the builtin function value:

Compare with the expression in terms of WeierstrassP:

Properties & Relations  (4)

WeierstrassHalfPeriods returns the pair and :

WeierstrassP is periodic, with periods equal to twice the half-periods:

The half-periods , and of Weierstrass elliptic functions are not linearly independent:

This identity holds for all arguments:

WeierstrassHalfPeriodW1 gives a zero of WeierstrassPPrime in the lattice cell:

Wolfram Research (2017), WeierstrassHalfPeriodW1, Wolfram Language function, https://reference.wolfram.com/language/ref/WeierstrassHalfPeriodW1.html (updated 2023).

Text

Wolfram Research (2017), WeierstrassHalfPeriodW1, Wolfram Language function, https://reference.wolfram.com/language/ref/WeierstrassHalfPeriodW1.html (updated 2023).

CMS

Wolfram Language. 2017. "WeierstrassHalfPeriodW1." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/WeierstrassHalfPeriodW1.html.

APA

Wolfram Language. (2017). WeierstrassHalfPeriodW1. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WeierstrassHalfPeriodW1.html

BibTeX

@misc{reference.wolfram_2024_weierstrasshalfperiodw1, author="Wolfram Research", title="{WeierstrassHalfPeriodW1}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/WeierstrassHalfPeriodW1.html}", note=[Accessed: 21-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_weierstrasshalfperiodw1, organization={Wolfram Research}, title={WeierstrassHalfPeriodW1}, year={2023}, url={https://reference.wolfram.com/language/ref/WeierstrassHalfPeriodW1.html}, note=[Accessed: 21-November-2024 ]}