gives the halfperiods {ω1,ω3} for Weierstrass elliptic functions corresponding to the invariants {g2,g3}.


  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • The halfperiods {ω1,ω3} define the fundamental period parallelogram for the Weierstrass elliptic functions.
  • WeierstrassHalfPeriods is the inverse of WeierstrassInvariants.
  • WeierstrassHalfPeriods can be evaluated to arbitrary numerical precision.


open allclose all

Basic Examples  (3)

Evaluate numerically:

Given the halfperiods, calculate a value of a Weierstrass function:

Scope  (2)

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Applications  (1)

Plot an elliptic function over a period parallelogram:

Properties & Relations  (1)

WeierstrassHalfPeriods is effectively the inverse of WeierstrassInvariants:

Possible Issues  (1)

Assignment to halfperiods with symbolic or exact invariants is impossible as the righthand side is not a list:

Neat Examples  (1)

A doubly periodic function over the complex plane:

Introduced in 1996