WeierstrassHalfPeriods
WeierstrassHalfPeriods[{g2,g3}]
gives the half‐periods {ω1,ω3} for Weierstrass elliptic functions corresponding to the invariants {g2,g3}.
Details
- Mathematical function, suitable for both symbolic and numerical manipulation.
- The half‐periods {ω1,ω3} define the fundamental period parallelogram for the Weierstrass elliptic functions.
- WeierstrassHalfPeriods is the inverse of WeierstrassInvariants.
- WeierstrassHalfPeriods can be evaluated to arbitrary numerical precision.
- WeierstrassHalfPeriods can be used with CenteredInterval objects. »
Examples
open allclose allBasic Examples (2)
Scope (4)
The precision of the output tracks the precision of the input:
Symbolic evaluation of the equianharmonic case of WeierstrassHalfPeriods:
Symbolic evaluation of the lemniscatic case of WeierstrassHalfPeriods:
WeierstrassHalfPeriods can be used with CenteredInterval objects:
Properties & Relations (2)
Possible Issues (1)
Assignment of half‐periods corresponding to symbolic or exact invariants is impossible as the right‐hand side is not a list:
Use WeierstrassHalfPeriodW1 and WeierstrassHalfPeriodW3 instead:
Text
Wolfram Research (1996), WeierstrassHalfPeriods, Wolfram Language function, https://reference.wolfram.com/language/ref/WeierstrassHalfPeriods.html (updated 2023).
CMS
Wolfram Language. 1996. "WeierstrassHalfPeriods." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/WeierstrassHalfPeriods.html.
APA
Wolfram Language. (1996). WeierstrassHalfPeriods. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WeierstrassHalfPeriods.html