WeierstrassE3

WeierstrassE3[{g2,g3}]

gives the value e3 of the Weierstrass elliptic function at the half-period TemplateBox[{{g, _, 2}, {g, _, 3}}, WeierstrassHalfPeriodW3].

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • WeierstrassE3 can be evaluated to arbitrary numerical precision.

Examples

open allclose all

Basic Examples  (3)

WeierstrassE3 represents the value of WeierstrassP at its third half-period ω3:

Evaluate numerically:

Plot the real and imaginary parts of the e3:

Scope  (3)

Evaluate to arbitrary precision:

Precision of the output tracks the precision of the input:

TraditionalForm formatting:

Applications  (1)

Find the modulus corresponding to the elliptic curve, specified by Weierstrass invariants:

Compute the modulus alternatively:

Properties & Relations  (3)

Values of WeierstrassP at half-periods are the roots of the defining polynomial:

Values of WeierstrassP at half-periods are not linearly independent:

This identity holds for all arguments:

Symmetric polynomials evaluated at values of WeierstrassP at half-periods yield WeierstrassInvariants:

Wolfram Research (2017), WeierstrassE3, Wolfram Language function, https://reference.wolfram.com/language/ref/WeierstrassE3.html.

Text

Wolfram Research (2017), WeierstrassE3, Wolfram Language function, https://reference.wolfram.com/language/ref/WeierstrassE3.html.

BibTeX

@misc{reference.wolfram_2021_weierstrasse3, author="Wolfram Research", title="{WeierstrassE3}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/WeierstrassE3.html}", note=[Accessed: 18-October-2021 ]}

BibLaTeX

@online{reference.wolfram_2021_weierstrasse3, organization={Wolfram Research}, title={WeierstrassE3}, year={2017}, url={https://reference.wolfram.com/language/ref/WeierstrassE3.html}, note=[Accessed: 18-October-2021 ]}

CMS

Wolfram Language. 2017. "WeierstrassE3." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WeierstrassE3.html.

APA

Wolfram Language. (2017). WeierstrassE3. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WeierstrassE3.html