InverseJacobiNC

InverseJacobiNC[v,m]

gives the inverse Jacobi elliptic function .

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • gives the value of u for which .
  • InverseJacobiNC has branch cut discontinuities in the complex plane with branch points at and infinity, and in the complex m plane with branch points at and infinity.
  • The inverse Jacobi elliptic functions are related to elliptic integrals.
  • For certain special arguments, InverseJacobiNC automatically evaluates to exact values.
  • InverseJacobiNC can be evaluated to arbitrary numerical precision.
  • InverseJacobiNC automatically threads over lists.

Examples

open allclose all

Basic Examples  (5)

Evaluate numerically:

Check defining property:

Plot the function over a subset of the reals:

Plot over a subset of the complexes:

Series expansion at the origin:

Series expansion at Infinity:

Scope  (28)

Numerical Evaluation  (5)

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Evaluate for complex arguments:

Evaluate InverseJacobiNC efficiently at high precision:

Compute average-case statistical intervals using Around:

Compute the elementwise values of an array:

Or compute the matrix InverseJacobiNC function using MatrixFunction:

Specific Values  (3)

Simple exact values are generated automatically:

Value at infinity:

Find a real root of the equation TemplateBox[{x, {1, /, 2}}, InverseJacobiNC]=1:

Visualization  (3)

Plot InverseJacobiNC for various values of the second parameter :

Plot InverseJacobiNC as a function of its parameter :

Plot the real part of TemplateBox[{3, }, InverseJacobiNC]:

Plot the imaginary part of TemplateBox[{3, z}, InverseJacobiNC]:

Function Properties  (6)

InverseJacobiNC is not an analytic function:

It has both singularities and discontinuities:

TemplateBox[{x, 1}, InverseJacobiNC] is nondecreasing on its real domain:

TemplateBox[{x, 1}, InverseJacobiNC] is injective:

TemplateBox[{x, 1}, InverseJacobiNC] is not surjective:

TemplateBox[{x, 1}, InverseJacobiNC] is non-negative on its real domain:

TemplateBox[{x, 1}, InverseJacobiNC] is concave on its real domain:

Differentiation  (4)

First derivative:

Higher derivatives:

Plot higher derivatives for :

Differentiate InverseJacobiNC with respect to the second argument :

Plot higher derivatives for :

Series Expansions  (3)

Taylor expansion for TemplateBox[{nu, m}, InverseJacobiNC] around :

Plot the first three approximations for TemplateBox[{nu, {1, /, 2}}, InverseJacobiNC] around :

Taylor expansion for TemplateBox[{nu, m}, InverseJacobiNC] around :

Plot the first three approximations for TemplateBox[{2, m}, InverseJacobiNC] around :

InverseJacobiNC can be applied to a power series:

Function Identities and Simplifications  (2)

InverseJacobiNC is the inverse function of JacobiNC:

Compose with inverse function:

Use PowerExpand to disregard multivaluedness of the inverse function:

Other Features  (2)

InverseJacobiNC threads elementwise over lists:

TraditionalForm formatting:

Applications  (1)

Plot contours of constant real and imaginary parts in the complex plane:

Properties & Relations  (1)

Obtain InverseJacobiNC from solving equations containing elliptic functions:

Wolfram Research (1988), InverseJacobiNC, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseJacobiNC.html.

Text

Wolfram Research (1988), InverseJacobiNC, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseJacobiNC.html.

CMS

Wolfram Language. 1988. "InverseJacobiNC." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/InverseJacobiNC.html.

APA

Wolfram Language. (1988). InverseJacobiNC. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseJacobiNC.html

BibTeX

@misc{reference.wolfram_2024_inversejacobinc, author="Wolfram Research", title="{InverseJacobiNC}", year="1988", howpublished="\url{https://reference.wolfram.com/language/ref/InverseJacobiNC.html}", note=[Accessed: 20-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_inversejacobinc, organization={Wolfram Research}, title={InverseJacobiNC}, year={1988}, url={https://reference.wolfram.com/language/ref/InverseJacobiNC.html}, note=[Accessed: 20-January-2025 ]}