JacobiNS[u,m]
gives the Jacobi elliptic function  .
.
 
     
   JacobiNS
JacobiNS[u,m]
gives the Jacobi elliptic function  .
.
Details
 
   - Mathematical function, suitable for both symbolic and numerical manipulation.
 , where , where . .
 is a doubly periodic function in u with periods is a doubly periodic function in u with periods and and , where , where is the elliptic integral EllipticK. is the elliptic integral EllipticK.
- JacobiNS is a meromorphic function in both arguments.
- For certain special arguments, JacobiNS automatically evaluates to exact values.
- JacobiNS can be evaluated to arbitrary numerical precision.
- JacobiNS automatically threads over lists.
Examples
open all close allBasic Examples (4)
Scope (34)
Numerical Evaluation (5)
Evaluate numerically to high precision:
The precision of the output tracks the precision of the input:
Evaluate for complex arguments:
Evaluate JacobiNS efficiently at high precision:
Compute average-case statistical intervals using Around:
Compute the elementwise values of an array:
Or compute the matrix JacobiNS function using MatrixFunction:
Specific Values (3)
Visualization (3)
Function Properties (8)
JacobiNS is ![4TemplateBox[{m}, EllipticK] 4TemplateBox[{m}, EllipticK]](Files/JacobiNS.en/12.png) -periodic along the real axis:
-periodic along the real axis:
JacobiNS is ![2ⅈTemplateBox[{{1, -, m}}, EllipticK] 2ⅈTemplateBox[{{1, -, m}}, EllipticK]](Files/JacobiNS.en/13.png) -periodic along the imaginary axis:
-periodic along the imaginary axis:
JacobiNS is an odd function in its first argument:
JacobiNS is not an analytic function:
It has both singularities and discontinuities:
![TemplateBox[{x, 3}, JacobiNS] TemplateBox[{x, 3}, JacobiNS]](Files/JacobiNS.en/14.png) is neither nondecreasing nor nonincreasing:
 is neither nondecreasing nor nonincreasing:
![TemplateBox[{x, m}, JacobiNS] TemplateBox[{x, m}, JacobiNS]](Files/JacobiNS.en/15.png) is not injective for any fixed
 is not injective for any fixed  :
:
JacobiNS is not surjective for any fixed  :
:
JacobiNS is neither non-negative nor non-positive:
JacobiNS is neither convex nor concave:
Differentiation (3)
Integration (3)
Indefinite integral of JacobiNS:
Definite integral of an odd function over the interval centered at the origin is 0:
Series Expansions (3)
Plot the first three approximations for ![TemplateBox[{x, {1, /, 3}}, JacobiNS] TemplateBox[{x, {1, /, 3}}, JacobiNS]](Files/JacobiNS.en/22.png) around
 around  :
:
Plot the first three approximations for ![TemplateBox[{1, m}, JacobiNS] TemplateBox[{1, m}, JacobiNS]](Files/JacobiNS.en/25.png) around
 around  :
:
JacobiNS can be applied to power series:
Function Identities and Simplifications (3)
Parity transformation and periodicity relations are automatically applied:
Identity involving JacobiCS:
Function Representations (3)
Representation in terms of Csc of JacobiAmplitude:
Relation to other Jacobi elliptic functions:
TraditionalForm formatting:
Applications (5)
Properties & Relations (2)
Compose with inverse functions:
Use PowerExpand to disregard multivaluedness of the inverse function:
See Also
Tech Notes
Related Guides
Related Links
History
Introduced in 1988 (1.0)
Text
Wolfram Research (1988), JacobiNS, Wolfram Language function, https://reference.wolfram.com/language/ref/JacobiNS.html.
CMS
Wolfram Language. 1988. "JacobiNS." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/JacobiNS.html.
APA
Wolfram Language. (1988). JacobiNS. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/JacobiNS.html
BibTeX
@misc{reference.wolfram_2025_jacobins, author="Wolfram Research", title="{JacobiNS}", year="1988", howpublished="\url{https://reference.wolfram.com/language/ref/JacobiNS.html}", note=[Accessed: 31-October-2025]}
BibLaTeX
@online{reference.wolfram_2025_jacobins, organization={Wolfram Research}, title={JacobiNS}, year={1988}, url={https://reference.wolfram.com/language/ref/JacobiNS.html}, note=[Accessed: 31-October-2025]}
![(d)/(dx)TemplateBox[{x, {1, /, 3}}, JacobiND]=0 (d)/(dx)TemplateBox[{x, {1, /, 3}}, JacobiND]=0](Files/JacobiNS.en/8.png)

![TemplateBox[{z, {1, /, 2}}, JacobiNS] TemplateBox[{z, {1, /, 2}}, JacobiNS]](Files/JacobiNS.en/10.png)
![TemplateBox[{z, {1, /, 2}}, JacobiNS] TemplateBox[{z, {1, /, 2}}, JacobiNS]](Files/JacobiNS.en/11.png)



![TemplateBox[{x, {1, /, 3}}, JacobiNS] TemplateBox[{x, {1, /, 3}}, JacobiNS]](Files/JacobiNS.en/21.png)
![TemplateBox[{1, m}, JacobiNS] TemplateBox[{1, m}, JacobiNS]](Files/JacobiNS.en/24.png)

