JacobiCN[u,m]
gives the Jacobi elliptic function  .
.
 
     
   JacobiCN
JacobiCN[u,m]
gives the Jacobi elliptic function  .
.
Details
 
   - Mathematical function, suitable for both symbolic and numerical manipulation.
 , where , where . .
 is a doubly periodic function in u with periods is a doubly periodic function in u with periods and and , where , where is the elliptic integral EllipticK. is the elliptic integral EllipticK.
- JacobiCN is a meromorphic function in both arguments.
- For certain special arguments, JacobiCN automatically evaluates to exact values.
- JacobiCN can be evaluated to arbitrary numerical precision.
- JacobiCN automatically threads over lists.
Examples
open all close allBasic Examples (5)
Scope (33)
Numerical Evaluation (5)
The precision of the output tracks the precision of the input:
Evaluate for complex arguments:
Evaluate JacobiCN efficiently at high precision:
Compute average-case statistical intervals using Around:
Compute the elementwise values of an array:
Or compute the matrix JacobiCN function using MatrixFunction:
Specific Values (3)
Visualization (3)
Function Properties (8)
JacobiCN is ![4 TemplateBox[{m}, EllipticK] 4 TemplateBox[{m}, EllipticK]](Files/JacobiCN.en/12.png) -periodic along the real axis:
-periodic along the real axis:
JacobiCN is ![4ⅈTemplateBox[{{1, -, m}}, EllipticK] 4ⅈTemplateBox[{{1, -, m}}, EllipticK]](Files/JacobiCN.en/13.png) -periodic along the imaginary axis:
-periodic along the imaginary axis:
JacobiCN is an even function in its first argument:
JacobiCN is an analytic function of x:
It has no singularities or discontinuities:
![TemplateBox[{x, {1, /, 3}}, JacobiCN] TemplateBox[{x, {1, /, 3}}, JacobiCN]](Files/JacobiCN.en/14.png) is neither nondecreasing nor nonincreasing:
 is neither nondecreasing nor nonincreasing:
![TemplateBox[{x, m}, JacobiCN] TemplateBox[{x, m}, JacobiCN]](Files/JacobiCN.en/15.png) is not injective for any fixed
 is not injective for any fixed  :
:
![TemplateBox[{x, m}, JacobiCN] TemplateBox[{x, m}, JacobiCN]](Files/JacobiCN.en/17.png) is not surjective for any fixed
 is not surjective for any fixed  :
:
![TemplateBox[{x, m}, JacobiCN] TemplateBox[{x, m}, JacobiCN]](Files/JacobiCN.en/19.png) is non-negative for positive integer values of
 is non-negative for positive integer values of  :
:
In general, it is neither non-negative nor non-positive:
JacobiCN is neither convex nor concave:
Differentiation (3)
Integration (3)
Indefinite integral of JacobiCN:
Definite integral of an even integrand over the interval centered at the origin:
Series Expansions (3)
Plot the first three approximations for ![TemplateBox[{x, {1, /, 3}}, JacobiCN] TemplateBox[{x, {1, /, 3}}, JacobiCN]](Files/JacobiCN.en/24.png) around
 around  :
:
Plot the first three approximations for ![TemplateBox[{1, m}, JacobiCN] TemplateBox[{1, m}, JacobiCN]](Files/JacobiCN.en/27.png) around
 around  :
:
JacobiCN can be applied to power series:
Function Identities and Simplifications (2)
Parity transformations and periodicity relations are automatically applied:
Identity involving JacobiSN:
Function Representations (3)
Representation in terms of Cos of JacobiAmplitude:
Relation to other Jacobi elliptic functions:
TraditionalForm formatting:
Applications (9)
Cnoidal solution of the KdV equation:
Conformal map from a unit triangle to the unit disk:
Show points before and after the map:
Solution of an anharmonic oscillator  :
:
Elliptic parametrization of an ellipse:
Plot using elliptic parametrization and circular parametrization:
Check that the solutions fulfill the Nahm equations:
Parametrization of a mylar balloon (two flat sheets of plastic sewn together at their circumference and then inflated):
Use JacobiCN to map a point from a 2D simplex to a 3‐by‐3 correlation matrix:
Visualize the determinant over the simplex:
Verify that the determinant is maximal at the centroid of the simplex:
Plot the maximum value of the determinant as a function of the elliptic parameter  :
:
Use the correlation matrix to define a 3D T copula distribution
Parameterization of an algebraic lemniscate:
Verify that the parametric function solves the algebraic equation for the lemniscate:
Periodic motion of 3 bodies, where the bodies chase each other on a common orbit with equal time‐spacing on a lemniscate:
The elliptic parameter is fixed by requiring that the center of mass of the 3-body system remains fixed at the origin:
Visualize the 3‐body configuration:
The 5-body configuration admits two elliptic parameters that fix the center of mass:
Parameterization of Costa's minimal surface [MathWorld]:
Properties & Relations (4)
Compose with inverse functions:
Use PowerExpand to disregard multivaluedness of the inverse function:
Evaluate as a result of applying Cos to JacobiAmplitude:
See Also
Tech Notes
Related Guides
Related Links
History
Introduced in 1988 (1.0)
Text
Wolfram Research (1988), JacobiCN, Wolfram Language function, https://reference.wolfram.com/language/ref/JacobiCN.html.
CMS
Wolfram Language. 1988. "JacobiCN." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/JacobiCN.html.
APA
Wolfram Language. (1988). JacobiCN. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/JacobiCN.html
BibTeX
@misc{reference.wolfram_2025_jacobicn, author="Wolfram Research", title="{JacobiCN}", year="1988", howpublished="\url{https://reference.wolfram.com/language/ref/JacobiCN.html}", note=[Accessed: 31-October-2025]}
BibLaTeX
@online{reference.wolfram_2025_jacobicn, organization={Wolfram Research}, title={JacobiCN}, year={1988}, url={https://reference.wolfram.com/language/ref/JacobiCN.html}, note=[Accessed: 31-October-2025]}
![TemplateBox[{x, {1, /, 3}}, JacobiCN] TemplateBox[{x, {1, /, 3}}, JacobiCN]](Files/JacobiCN.en/8.png)

![TemplateBox[{z, {1, /, 2}}, JacobiCN] TemplateBox[{z, {1, /, 2}}, JacobiCN]](Files/JacobiCN.en/10.png)
![TemplateBox[{z, {1, /, 2}}, JacobiCN] TemplateBox[{z, {1, /, 2}}, JacobiCN]](Files/JacobiCN.en/11.png)


![TemplateBox[{x, {1, /, 3}}, JacobiCN] TemplateBox[{x, {1, /, 3}}, JacobiCN]](Files/JacobiCN.en/23.png)
![TemplateBox[{1, m}, JacobiCN] TemplateBox[{1, m}, JacobiCN]](Files/JacobiCN.en/26.png)