NevilleThetaN

NevilleThetaN[z,m]

gives the Neville theta function .

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • NevilleThetaN[z,m] is a meromorphic function of z and has a complicated branch cut structure in the complex m plane.
  • For certain special arguments, NevilleThetaN automatically evaluates to exact values.
  • NevilleThetaN can be evaluated to arbitrary numerical precision.
  • NevilleThetaN automatically threads over lists.

Examples

open allclose all

Basic Examples  (3)

Evaluate numerically:

Plot over a subset of the reals::

Plot over a subset of the complexes:

Scope  (27)

Numerical Evaluation  (4)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number inputs:

Evaluate efficiently at high precision:

Specific Values  (3)

Values at corners of the fundamental cell:

NevilleThetaN for special values of elliptic parameter:

Find the first positive maximum of NevilleThetaN[x,1/2]:

Visualization  (3)

Plot the NevilleThetaN functions for various values of the parameter:

Plot NevilleThetaN as a function of its parameter :

Plot the real part of TemplateBox[{{x, +, iy}, {1, /, 2}}, NevilleThetaN]:

Plot the imaginary part of TemplateBox[{{x, +, iy}, {1, /, 2}}, NevilleThetaN]:

Function Properties  (13)

The real domain of NevilleThetaN:

The complex domain of NevilleThetaN:

Function range of TemplateBox[{x, 0}, NevilleThetaN]:

Function range of TemplateBox[{x, 1}, NevilleThetaN]:

NevilleThetaN is an even function:

NevilleThetaN vanishes at z=ⅈ TemplateBox[{{1, -, m}}, EllipticK]:

NevilleThetaN threads elementwise over lists:

TemplateBox[{x, m}, NevilleThetaN] is an analytic function of for :

TemplateBox[{x, {1, /, 3}}, NevilleThetaN] is neither non-decreasing nor non-increasing:

TemplateBox[{x, {1, /, 3}}, NevilleThetaN] is not injective:

TemplateBox[{x, {1, /, 3}}, NevilleThetaN] is not surjective:

TemplateBox[{x, m}, NevilleThetaN] is non-negative for noninteger m:

TemplateBox[{x, m}, NevilleThetaN] has no singularities or discontinuities for noninteger m:

TemplateBox[{x, m}, NevilleThetaN] is convex only for and otherwise it is neither convex nor concave:

TraditionalForm formatting:

Differentiation  (2)

The firstorder derivatives:

Higher-order derivatives:

Plot the higher-order derivatives:

Series Expansions  (2)

Find the Taylor expansion using Series:

Plots of the first three approximations around :

The Taylor expansion for small elliptic parameter :

The Taylor expansion around :

Generalizations & Extensions  (1)

NevilleThetaN can be applied to power series:

Applications  (5)

Plot over the arguments' plane:

Conformal map from a unit triangle to the unit disk:

Show points before and after the map:

Uniformization of a Fermat cubic :

Plot the curve for real :

Verify that points on the curve satisfy :

Current flow in a rectangular conducting sheet with voltage applied at a pair of opposite corners:

Plot the flow lines:

Parametrize a lemniscate by arc length:

Show arc length and classical parametrizations:

Properties & Relations  (4)

Basic simplifications are automatically carried out:

All Neville theta functions are a multiple of shifted NevilleThetaN:

Use FullSimplify for expressions containing Neville theta functions:

Numerically find a root of a transcendental equation:

Possible Issues  (1)

Machine-precision input is insufficient to give a correct answer:

Wolfram Research (1996), NevilleThetaN, Wolfram Language function, https://reference.wolfram.com/language/ref/NevilleThetaN.html.

Text

Wolfram Research (1996), NevilleThetaN, Wolfram Language function, https://reference.wolfram.com/language/ref/NevilleThetaN.html.

BibTeX

@misc{reference.wolfram_2021_nevillethetan, author="Wolfram Research", title="{NevilleThetaN}", year="1996", howpublished="\url{https://reference.wolfram.com/language/ref/NevilleThetaN.html}", note=[Accessed: 23-October-2021 ]}

BibLaTeX

@online{reference.wolfram_2021_nevillethetan, organization={Wolfram Research}, title={NevilleThetaN}, year={1996}, url={https://reference.wolfram.com/language/ref/NevilleThetaN.html}, note=[Accessed: 23-October-2021 ]}

CMS

Wolfram Language. 1996. "NevilleThetaN." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/NevilleThetaN.html.

APA

Wolfram Language. (1996). NevilleThetaN. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/NevilleThetaN.html