WOLFRAM

gives the Neville theta function .

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • NevilleThetaC[z,m] is a meromorphic function of z and has a complicated branch cut structure in the complex m plane.
  • For certain special arguments, NevilleThetaC automatically evaluates to exact values.
  • NevilleThetaC can be evaluated to arbitrary numerical precision.
  • NevilleThetaC automatically threads over lists.

Examples

open allclose all

Basic Examples  (4)Summary of the most common use cases

Evaluate numerically:

Out[1]=1

Plot over a subset of the reals::

Out[1]=1

Plot over a subset of the complexes:

Out[1]=1

Series expansion at the origin:

Out[1]=1

Scope  (29)Survey of the scope of standard use cases

Numerical Evaluation  (6)

Evaluate numerically:

Out[1]=1
Out[2]=2

Evaluate to high precision:

Out[1]=1
Out[2]=2

The precision of the output tracks the precision of the input:

Out[3]=3

Complex number inputs:

Out[1]=1

Evaluate efficiently at high precision:

Out[1]=1
Out[2]=2

Compute average-case statistical intervals using Around:

Out[1]=1

Compute the elementwise values of an array:

Out[1]=1

Or compute the matrix NevilleThetaC function using MatrixFunction:

Out[2]=2

Specific Values  (4)

Values at corners of the fundamental cell:

Out[2]=2

NevilleThetaC for special values of elliptic parameter:

Out[1]=1
Out[2]=2

Find the first positive maximum of NevilleThetaC[x,1/4]:

Out[1]=1
Out[2]=2

Different NevilleThetaC types give different symbolic forms:

Out[1]=1

Visualization  (3)

Plot the NevilleThetaC functions for various values of the parameter:

Out[1]=1

Plot NevilleThetaC as a function of its parameter :

Out[1]=1

Plot the real part of TemplateBox[{z, {1, /, 2}}, NevilleThetaC]:

Out[1]=1

Plot the imaginary part of TemplateBox[{z, {1, /, 2}}, NevilleThetaC]:

Out[2]=2

Function Properties  (12)

The real domain of NevilleThetaC:

Out[1]=1

The complex domain of NevilleThetaC:

Out[2]=2

Approximate function range of TemplateBox[{x, 0}, NevilleThetaC]:

Out[1]=1

Approximate function range of TemplateBox[{x, 1}, NevilleThetaC]:

Out[2]=2

NevilleThetaC is an even function:

Out[1]=1

NevilleThetaC threads elementwise over lists:

Out[1]=1
Out[2]=2

TemplateBox[{x, m}, NevilleThetaC] is an analytic function of for :

Out[1]=1

TemplateBox[{x, {1, /, 3}}, NevilleThetaC] is neither non-decreasing nor non-increasing:

Out[1]=1

TemplateBox[{x, {1, /, 3}}, NevilleThetaC] is not injective:

Out[1]=1
Out[2]=2

TemplateBox[{x, {1, /, 3}}, NevilleThetaC] is not surjective:

Out[1]=1
Out[2]=2

TemplateBox[{x, m}, NevilleThetaC] is neither non-negative nor non-positive, except for :

Out[1]=1

TemplateBox[{x, m}, NevilleThetaC] has no singularities or discontinuities except for :

Out[1]=1
Out[2]=2

TemplateBox[{x, m}, NevilleThetaC] is affine only for and otherwise it is neither convex nor concave:

Out[1]=1

Format NevilleThetaC in TraditionalForm:

Differentiation  (2)

The first-order derivatives:

Out[1]=1
Out[2]=2

Higher-order derivatives:

Plot the higher-order derivatives:

Out[2]=2

Series Expansions  (2)

Find the Taylor expansion using Series:

Out[1]=1

Plots of the first three approximations around :

Out[2]=2

The Taylor expansion for small elliptic parameter m:

Out[1]=1

The Taylor expansion around :

Out[2]=2

Generalizations & Extensions  (1)Generalized and extended use cases

NevilleThetaC can be applied to a power series:

Out[1]=1

Applications  (4)Sample problems that can be solved with this function

Plot over the plane:

Out[1]=1

Current flow in a rectangular conducting sheet with voltage applied at a pair of opposite corners:

Plot the flow lines:

Out[2]=2

Parametrize a lemniscate by arc length:

Show the classical and arc length parametrizations:

Out[2]=2

Uniformization of a Fermat cubic :

Plot the curve for real :

Out[2]=2

Verify that points on the curve satisfy :

Out[3]=3

Properties & Relations  (3)Properties of the function, and connections to other functions

Basic simplifications are automatically carried out:

Out[1]=1
Out[2]=2

All Neville theta functions are a multiple of shifted NevilleThetaC:

Out[1]=1
Out[2]=2
Out[3]=3

Numerically find a root of a transcendental equation:

Out[1]=1

Possible Issues  (1)Common pitfalls and unexpected behavior

Machine-precision input is insufficient to give a correct answer:

Out[1]=1
Out[2]=2
Wolfram Research (1996), NevilleThetaC, Wolfram Language function, https://reference.wolfram.com/language/ref/NevilleThetaC.html.
Wolfram Research (1996), NevilleThetaC, Wolfram Language function, https://reference.wolfram.com/language/ref/NevilleThetaC.html.

Text

Wolfram Research (1996), NevilleThetaC, Wolfram Language function, https://reference.wolfram.com/language/ref/NevilleThetaC.html.

Wolfram Research (1996), NevilleThetaC, Wolfram Language function, https://reference.wolfram.com/language/ref/NevilleThetaC.html.

CMS

Wolfram Language. 1996. "NevilleThetaC." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/NevilleThetaC.html.

Wolfram Language. 1996. "NevilleThetaC." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/NevilleThetaC.html.

APA

Wolfram Language. (1996). NevilleThetaC. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/NevilleThetaC.html

Wolfram Language. (1996). NevilleThetaC. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/NevilleThetaC.html

BibTeX

@misc{reference.wolfram_2025_nevillethetac, author="Wolfram Research", title="{NevilleThetaC}", year="1996", howpublished="\url{https://reference.wolfram.com/language/ref/NevilleThetaC.html}", note=[Accessed: 23-April-2025 ]}

@misc{reference.wolfram_2025_nevillethetac, author="Wolfram Research", title="{NevilleThetaC}", year="1996", howpublished="\url{https://reference.wolfram.com/language/ref/NevilleThetaC.html}", note=[Accessed: 23-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_nevillethetac, organization={Wolfram Research}, title={NevilleThetaC}, year={1996}, url={https://reference.wolfram.com/language/ref/NevilleThetaC.html}, note=[Accessed: 23-April-2025 ]}

@online{reference.wolfram_2025_nevillethetac, organization={Wolfram Research}, title={NevilleThetaC}, year={1996}, url={https://reference.wolfram.com/language/ref/NevilleThetaC.html}, note=[Accessed: 23-April-2025 ]}