gives the Neville theta function .


  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • NevilleThetaC[z,m] is a meromorphic function of z and has a complicated branch cut structure in the complex m plane.
  • For certain special arguments, NevilleThetaC automatically evaluates to exact values.
  • NevilleThetaC can be evaluated to arbitrary numerical precision.
  • NevilleThetaC automatically threads over lists.


open allclose all

Basic Examples  (4)

Evaluate numerically:

Plot over a subset of the reals::

Plot over a subset of the complexes:

Series expansion at the origin:

Scope  (20)

Numerical Evaluation  (4)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number inputs:

Evaluate efficiently at high precision:

Specific Values  (4)

NevilleThetaC for symbolic m:

Values at zero:

Find the first positive maximum of NevilleThetaC[x,1/4]:

Different NevilleThetaC types give different symbolic forms:

Visualization  (3)

Plot the NevilleThetaC functions for various values of the parameter:

Plot NevilleThetaC as a function of its parameter :

Plot the real part of TemplateBox[{{x, +, iy}, {1, /, 2}}, NevilleThetaC]:

Plot the imaginary part of TemplateBox[{{x, +, iy}, {1, /, 2}}, NevilleThetaC]:

Function Properties  (5)

The real domain of NevilleThetaC:

The complex domain of NevilleThetaC:

Approximate function range of TemplateBox[{x, 0}, NevilleThetaC]:

Approximate function range of TemplateBox[{x, 1}, NevilleThetaC]:

NevilleThetaC is an even function:

NevilleThetaC threads elementwise over lists:

Format NevilleThetaC in TraditionalForm:

Differentiation  (2)

The first derivative:

Higher derivatives:

Plot the higher derivatives:

Series Expansions  (2)

Find the Taylor expansion using Series:

Plots of the first three approximations around :

The Taylor expansion at a generic point:

Generalizations & Extensions  (1)

NevilleThetaC can be applied to a power series:

Applications  (3)

Plot over the plane:

Current flow in a rectangular conducting sheet with voltage applied at a pair of opposite corners:

Plot the flow lines:

Parametrize a lemniscate by arc length:

Show the classical and arc length parametrizations:

Properties & Relations  (2)

Basic simplifications are automatically carried out:

Numerically find a root of a transcendental equation:

Possible Issues  (1)

Machine-precision input is insufficient to give a correct answer:

Introduced in 1996