NevilleThetaC
✖
NevilleThetaC
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
-
- NevilleThetaC[z,m] is a meromorphic function of
and has a complicated branch cut structure in the complex
plane.
- For certain special arguments, NevilleThetaC automatically evaluates to exact values.
- NevilleThetaC can be evaluated to arbitrary numerical precision.
- NevilleThetaC automatically threads over lists.
Examples
open allclose allBasic Examples (4)Summary of the most common use cases

https://wolfram.com/xid/0j0fhb4k7hejg1-l281z7

Plot over a subset of the reals::

https://wolfram.com/xid/0j0fhb4k7hejg1-lyrhpd

Plot over a subset of the complexes:

https://wolfram.com/xid/0j0fhb4k7hejg1-kiedlx

Series expansion at the origin:

https://wolfram.com/xid/0j0fhb4k7hejg1-gnpb0e

Scope (29)Survey of the scope of standard use cases
Numerical Evaluation (6)

https://wolfram.com/xid/0j0fhb4k7hejg1-l274ju


https://wolfram.com/xid/0j0fhb4k7hejg1-whe1w


https://wolfram.com/xid/0j0fhb4k7hejg1-b0wt9


https://wolfram.com/xid/0j0fhb4k7hejg1-hwtopb

The precision of the output tracks the precision of the input:

https://wolfram.com/xid/0j0fhb4k7hejg1-y7k4a


https://wolfram.com/xid/0j0fhb4k7hejg1-hfml09

Evaluate efficiently at high precision:

https://wolfram.com/xid/0j0fhb4k7hejg1-di5gcr


https://wolfram.com/xid/0j0fhb4k7hejg1-bq2c6r

Compute average-case statistical intervals using Around:

https://wolfram.com/xid/0j0fhb4k7hejg1-cw18bq

Compute the elementwise values of an array:

https://wolfram.com/xid/0j0fhb4k7hejg1-thgd2

Or compute the matrix NevilleThetaC function using MatrixFunction:

https://wolfram.com/xid/0j0fhb4k7hejg1-o5jpo

Specific Values (4)
Values at corners of the fundamental cell:

https://wolfram.com/xid/0j0fhb4k7hejg1-bmqd0y

NevilleThetaC for special values of elliptic parameter:

https://wolfram.com/xid/0j0fhb4k7hejg1-g48t0


https://wolfram.com/xid/0j0fhb4k7hejg1-869zt

Find the first positive maximum of NevilleThetaC[x,1/4]:

https://wolfram.com/xid/0j0fhb4k7hejg1-f2hrld


https://wolfram.com/xid/0j0fhb4k7hejg1-n6y2jg

Different NevilleThetaC types give different symbolic forms:

https://wolfram.com/xid/0j0fhb4k7hejg1-chhice

Visualization (3)
Plot the NevilleThetaC functions for various values of the parameter:

https://wolfram.com/xid/0j0fhb4k7hejg1-ecj8m7

Plot NevilleThetaC as a function of its parameter :

https://wolfram.com/xid/0j0fhb4k7hejg1-du62z6


https://wolfram.com/xid/0j0fhb4k7hejg1-ouu484


https://wolfram.com/xid/0j0fhb4k7hejg1-i524wl

Function Properties (12)
The real domain of NevilleThetaC:

https://wolfram.com/xid/0j0fhb4k7hejg1-cl7ele

The complex domain of NevilleThetaC:

https://wolfram.com/xid/0j0fhb4k7hejg1-de3irc

Approximate function range of :

https://wolfram.com/xid/0j0fhb4k7hejg1-evf2yr

Approximate function range of :

https://wolfram.com/xid/0j0fhb4k7hejg1-fphbrc

NevilleThetaC is an even function:

https://wolfram.com/xid/0j0fhb4k7hejg1-ewxrep

NevilleThetaC threads elementwise over lists:

https://wolfram.com/xid/0j0fhb4k7hejg1-jmq1ol


https://wolfram.com/xid/0j0fhb4k7hejg1-cojjcs

is an analytic function of
for
:

https://wolfram.com/xid/0j0fhb4k7hejg1-gva6yl

is neither non-decreasing nor non-increasing:

https://wolfram.com/xid/0j0fhb4k7hejg1-2ra8g


https://wolfram.com/xid/0j0fhb4k7hejg1-c9npzh


https://wolfram.com/xid/0j0fhb4k7hejg1-b5buvp


https://wolfram.com/xid/0j0fhb4k7hejg1-patce


https://wolfram.com/xid/0j0fhb4k7hejg1-bcrbvs

is neither non-negative nor non-positive, except for
:

https://wolfram.com/xid/0j0fhb4k7hejg1-c4n496

has no singularities or discontinuities except for
:

https://wolfram.com/xid/0j0fhb4k7hejg1-ymhn08


https://wolfram.com/xid/0j0fhb4k7hejg1-ga9e3b

is affine only for
and otherwise it is neither convex nor concave:

https://wolfram.com/xid/0j0fhb4k7hejg1-l0srvu

Format NevilleThetaC in TraditionalForm:

https://wolfram.com/xid/0j0fhb4k7hejg1-celm6m

Differentiation (2)
Series Expansions (2)
Find the Taylor expansion using Series:

https://wolfram.com/xid/0j0fhb4k7hejg1-ewr1h8

Plots of the first three approximations around :

https://wolfram.com/xid/0j0fhb4k7hejg1-binhar

The Taylor expansion for small elliptic parameter m:

https://wolfram.com/xid/0j0fhb4k7hejg1-jwxla7


https://wolfram.com/xid/0j0fhb4k7hejg1-jqhnbe

Generalizations & Extensions (1)Generalized and extended use cases
NevilleThetaC can be applied to a power series:

https://wolfram.com/xid/0j0fhb4k7hejg1-krofdx

Applications (4)Sample problems that can be solved with this function

https://wolfram.com/xid/0j0fhb4k7hejg1-d59xwk

Current flow in a rectangular conducting sheet with voltage applied at a pair of opposite corners:

https://wolfram.com/xid/0j0fhb4k7hejg1-vc9tw

https://wolfram.com/xid/0j0fhb4k7hejg1-rxs56

Parametrize a lemniscate by arc length:

https://wolfram.com/xid/0j0fhb4k7hejg1-g6z8to
Show the classical and arc length parametrizations:

https://wolfram.com/xid/0j0fhb4k7hejg1-k9m6w5

Uniformization of a Fermat cubic :

https://wolfram.com/xid/0j0fhb4k7hejg1-po7fk

https://wolfram.com/xid/0j0fhb4k7hejg1-iwlvkn

Verify that points on the curve satisfy :

https://wolfram.com/xid/0j0fhb4k7hejg1-f37x35

Properties & Relations (3)Properties of the function, and connections to other functions
Basic simplifications are automatically carried out:

https://wolfram.com/xid/0j0fhb4k7hejg1-i7s5va


https://wolfram.com/xid/0j0fhb4k7hejg1-cvc7zb

All Neville theta functions are a multiple of shifted NevilleThetaC:

https://wolfram.com/xid/0j0fhb4k7hejg1-lb45ow


https://wolfram.com/xid/0j0fhb4k7hejg1-bdg6c5


https://wolfram.com/xid/0j0fhb4k7hejg1-bskah1

Numerically find a root of a transcendental equation:

https://wolfram.com/xid/0j0fhb4k7hejg1-f38tf8

Wolfram Research (1996), NevilleThetaC, Wolfram Language function, https://reference.wolfram.com/language/ref/NevilleThetaC.html.
Text
Wolfram Research (1996), NevilleThetaC, Wolfram Language function, https://reference.wolfram.com/language/ref/NevilleThetaC.html.
Wolfram Research (1996), NevilleThetaC, Wolfram Language function, https://reference.wolfram.com/language/ref/NevilleThetaC.html.
CMS
Wolfram Language. 1996. "NevilleThetaC." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/NevilleThetaC.html.
Wolfram Language. 1996. "NevilleThetaC." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/NevilleThetaC.html.
APA
Wolfram Language. (1996). NevilleThetaC. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/NevilleThetaC.html
Wolfram Language. (1996). NevilleThetaC. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/NevilleThetaC.html
BibTeX
@misc{reference.wolfram_2025_nevillethetac, author="Wolfram Research", title="{NevilleThetaC}", year="1996", howpublished="\url{https://reference.wolfram.com/language/ref/NevilleThetaC.html}", note=[Accessed: 23-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_nevillethetac, organization={Wolfram Research}, title={NevilleThetaC}, year={1996}, url={https://reference.wolfram.com/language/ref/NevilleThetaC.html}, note=[Accessed: 23-April-2025
]}