gives the Neville theta function .


  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • NevilleThetaS[z,m] is a meromorphic function of z and has a complicated branch cut structure in the complex m plane.
  • For certain special arguments, NevilleThetaS automatically evaluates to exact values.
  • NevilleThetaS can be evaluated to arbitrary numerical precision.
  • NevilleThetaS automatically threads over lists.


open allclose all

Basic Examples  (3)

Evaluate numerically:

Plot over a subset of the reals::

Plot over a subset of the complexes:

Scope  (25)

Numerical Evaluation  (4)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number inputs:

Evaluate efficiently at high precision:

Specific Values  (3)

Values at corners of the fundamental cell:

NevilleThetaS for special values of elliptic parameter:

Find the first positive maximum of NevilleThetaS[x,1/2]:

Visualization  (3)

Plot the NevilleThetaS functions for various values of the parameter:

Plot NevilleThetaS as a function of its parameter :

Plot the real part of TemplateBox[{z, {1, /, 2}}, NevilleThetaS]:

Plot the imaginary part of TemplateBox[{z, {1, /, 2}}, NevilleThetaS]:

Function Properties  (11)

The real domain of NevilleThetaS:

The complex domain of NevilleThetaS:

Function range of TemplateBox[{x, 0}, NevilleThetaS]:

Function range of TemplateBox[{x, 1}, NevilleThetaS]:

NevilleThetaS threads elementwise over lists:

TemplateBox[{x, m}, NevilleThetaS] is an analytic function of for :

TemplateBox[{x, {1, /, 3}}, NevilleThetaS] is neither non-decreasing nor non-increasing:

TemplateBox[{x, {1, /, 3}}, NevilleThetaS] is not injective:

TemplateBox[{x, {1, /, 3}}, NevilleThetaS] is not surjective:

TemplateBox[{x, m}, NevilleThetaS] is neither non-negative nor non-positive for noninteger :

TemplateBox[{x, m}, NevilleThetaS] has no singularities or discontinuities for noninteger :

TemplateBox[{x, m}, NevilleThetaS] is affine only for and otherwise it is neither convex nor concave:

TraditionalForm formatting:

Differentiation  (2)

The first-order derivatives:

Higher-order derivatives:

Plot the higher-order derivatives:

Series Expansions  (2)

Find the Taylor expansion using Series:

Plots of the first three approximations around :

The Taylor expansion for small elliptic parameter :

The Taylor expansion around :

Generalizations & Extensions  (1)

NevilleThetaS can be applied to power series:

Applications  (7)

Plot over the arguments' plane:

Conformal map from a unit triangle to the unit disk:

Show points before and after the map:

Uniformization of a Fermat cubic :

Plot the curve for real :

Verify that points on the curve satisfy :

Current flow in a rectangular conducting sheet with voltage applied at a pair of opposite corners:

Plot the flow lines:

Parametrize a lemniscate by arc length:

Show the classical and arc length parametrizations:

Complex parametrization of a sphere:

The square of all points on the complex sphere is 1:

Conformal map from an ellipse to the unit disk:

Visualize the map:

Properties & Relations  (4)

Basic simplifications are automatically carried out:

All Neville theta functions are a multiple of shifted NevilleThetaS:

Use FullSimplify for expressions containing Neville theta functions:

Numerically find a root of a transcendental equation:

Possible Issues  (1)

Machine-precision input is insufficient to give a correct answer:

Wolfram Research (1996), NevilleThetaS, Wolfram Language function,


Wolfram Research (1996), NevilleThetaS, Wolfram Language function,


Wolfram Language. 1996. "NevilleThetaS." Wolfram Language & System Documentation Center. Wolfram Research.


Wolfram Language. (1996). NevilleThetaS. Wolfram Language & System Documentation Center. Retrieved from


@misc{reference.wolfram_2024_nevillethetas, author="Wolfram Research", title="{NevilleThetaS}", year="1996", howpublished="\url{}", note=[Accessed: 17-July-2024 ]}


@online{reference.wolfram_2024_nevillethetas, organization={Wolfram Research}, title={NevilleThetaS}, year={1996}, url={}, note=[Accessed: 17-July-2024 ]}