# LinearizingTransformationData

represents data of an AffineStateSpaceModel linearized by functions such as FeedbackLinearize and StateTransformationLinearize using transformation of variables.

# Details

• A object ltd can be used to retrieve various properties.
• The list of available properties is given by ltd["Properties"].
• Additional information about the properties is listed on function pages FeedbackLinearize, StateTransformationLinearize, and CarlemanLinearize.
• Typical properties include:
•  "Linearization" type of linearization "TransformedSystem" system in the new coordinates "InverseStateTransformation" inverse transformation of the state variables

# Examples

open allclose all

## Basic Examples(1)

Feedback linearize a system:

Obtain the list of properties:

The transformed system:

## Scope(4)

Obtain a particular property value:

Obtain several property values simultaneously:

Some properties could be missing:

Some properties require multiple arguments:

Compute a set of feedback gains based on the linearized system:

This can be used to obtain the closed-loop system:

Simulate the closed-loop system:

Wolfram Research (2014), LinearizingTransformationData, Wolfram Language function, https://reference.wolfram.com/language/ref/LinearizingTransformationData.html.

#### Text

Wolfram Research (2014), LinearizingTransformationData, Wolfram Language function, https://reference.wolfram.com/language/ref/LinearizingTransformationData.html.

#### CMS

Wolfram Language. 2014. "LinearizingTransformationData." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/LinearizingTransformationData.html.

#### APA

Wolfram Language. (2014). LinearizingTransformationData. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/LinearizingTransformationData.html

#### BibTeX

@misc{reference.wolfram_2022_linearizingtransformationdata, author="Wolfram Research", title="{LinearizingTransformationData}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/LinearizingTransformationData.html}", note=[Accessed: 02-June-2023 ]}

#### BibLaTeX

@online{reference.wolfram_2022_linearizingtransformationdata, organization={Wolfram Research}, title={LinearizingTransformationData}, year={2014}, url={https://reference.wolfram.com/language/ref/LinearizingTransformationData.html}, note=[Accessed: 02-June-2023 ]}