PowerSymmetricPolynomial

PowerSymmetricPolynomial[r]

指数が r の形式的なベキ対称式を表す.

PowerSymmetricPolynomial[{r1,r2,}]

指数が r1, r2, の多変量の形式的なベキ対称式を表す.

PowerSymmetricPolynomial[rspec,data]

data におけるベキ対称式を返す.

詳細

例題

すべて開くすべて閉じる

  (1)

スコープ  (3)

位数0のPowerSymmetricPolynomialは事実上データ点の数である:

MomentEvaluateを使ってデータについての形式的なベキ対称式を評価する:

TraditionalFormによる表示:

アプリケーション  (1)

AugmentedSymmetricPolynomialを使ってベキ対称式を線形化する:

5変数について等価性をチェックする:

特性と関係  (1)

PowerSymmetricPolynomial は1個の指数の場合, AugmentedSymmetricPolynomial と同じである:

この関係は多変量でも成り立つ:

Wolfram Research (2010), PowerSymmetricPolynomial, Wolfram言語関数, https://reference.wolfram.com/language/ref/PowerSymmetricPolynomial.html.

テキスト

Wolfram Research (2010), PowerSymmetricPolynomial, Wolfram言語関数, https://reference.wolfram.com/language/ref/PowerSymmetricPolynomial.html.

CMS

Wolfram Language. 2010. "PowerSymmetricPolynomial." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/PowerSymmetricPolynomial.html.

APA

Wolfram Language. (2010). PowerSymmetricPolynomial. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PowerSymmetricPolynomial.html

BibTeX

@misc{reference.wolfram_2024_powersymmetricpolynomial, author="Wolfram Research", title="{PowerSymmetricPolynomial}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/PowerSymmetricPolynomial.html}", note=[Accessed: 21-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_powersymmetricpolynomial, organization={Wolfram Research}, title={PowerSymmetricPolynomial}, year={2010}, url={https://reference.wolfram.com/language/ref/PowerSymmetricPolynomial.html}, note=[Accessed: 21-November-2024 ]}