RealExponent
RealExponent[x]
gives .
RealExponent[x,b]
gives .
Details
- If x is an approximate number consistent with zero, then RealExponent[x] gives -Accuracy[x].
- For any approximate number x, RealExponent[x] is equal to Precision[x]-Accuracy[x]. »
- RealExponent automatically threads over lists.
Examples
open allclose allBasic Examples (1)
Scope (8)
The real exponent for an arbitrary-precision number:
The result of RealExponent is given as a machine number whatever the precision of :
The real exponent for an exact number:
The real exponent for an exact numeric quantity:
This is -Accuracy[x]:
The same is true for arbitrary-precision zeros:
The real exponent for different bases:
The base can be any number strictly greater than 1:
The base can be an exact numeric quantity:
RealExponent automatically threads over lists:
Applications (2)
Properties & Relations (4)
For any approximate number x, RealExponent[x] is equal to Precision[x]-Accuracy[x]:
Also true for arbitrary-precision numbers:
If x is an approximate zero, then RealExponent[x] gives -Accuracy[x]:
This is the same as saying that the identity RealExponent[x] is equal to Precision[x]-Accuracy[x]:
Since precision is zero for approximate zeros:
The real exponent of a product is the sum of the real exponents:
The real exponent of a power is the real exponent of the base times the power:
Text
Wolfram Research (2007), RealExponent, Wolfram Language function, https://reference.wolfram.com/language/ref/RealExponent.html.
CMS
Wolfram Language. 2007. "RealExponent." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RealExponent.html.
APA
Wolfram Language. (2007). RealExponent. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RealExponent.html