SpheroidalJoiningFactor[n,m,γ]
gives the spheroidal joining factor with degree and order
.


SpheroidalJoiningFactor
SpheroidalJoiningFactor[n,m,γ]
gives the spheroidal joining factor with degree and order
.
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- For certain special arguments, SpheroidalJoiningFactor automatically evaluates to exact values.
- SpheroidalJoiningFactor can be evaluated to arbitrary numerical precision.
- SpheroidalJoiningFactor automatically threads over lists.
Examples
open all close allScope (9)
Numerical Evaluation (4)
Specific Values (3)
Find a value of x for which SpheroidalJoiningFactor[0,1/2,x]=5:
SpheroidalJoiningFactor threads elementwise over lists:
Visualization (2)
Plot the SpheroidalJoiningFactor function:
Plot the real part of SpheroidalJoiningFactor[2,1,x+i y]:
Plot the imaginary part of SpheroidalJoiningFactor[2,1,x+i y]:
See Also
Tech Notes
Related Guides
History
Text
Wolfram Research (2007), SpheroidalJoiningFactor, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html.
CMS
Wolfram Language. 2007. "SpheroidalJoiningFactor." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html.
APA
Wolfram Language. (2007). SpheroidalJoiningFactor. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html
BibTeX
@misc{reference.wolfram_2025_spheroidaljoiningfactor, author="Wolfram Research", title="{SpheroidalJoiningFactor}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html}", note=[Accessed: 08-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_spheroidaljoiningfactor, organization={Wolfram Research}, title={SpheroidalJoiningFactor}, year={2007}, url={https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html}, note=[Accessed: 08-August-2025]}