gives the spheroidal joining factor with degree n and order m.



open allclose all

Basic Examples  (2)

Evaluate numerically:

Plot over a subset of the reals:

Scope  (9)

Numerical Evaluation  (4)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number inputs:

Evaluate efficiently at high precision:

Specific Values  (3)

Value at zero:

Find a value of x for which SpheroidalJoiningFactor[0,1/2,x]=5:

SpheroidalJoiningFactor threads elementwise over lists:

Visualization  (2)

Plot the SpheroidalJoiningFactor function:

Plot the real part of SpheroidalJoiningFactor[2,1,x+i y]:

Plot the imaginary part of SpheroidalJoiningFactor[2,1,x+i y]:

Applications  (1)

A relation between radial and angular spheroidal functions:

Check numerically:

Possible Issues  (1)

Spheroidal functions do not evaluate for half-integer values of n and generic values of m:

Introduced in 2007