SurvivalFunction
✖
SurvivalFunction
gives the multivariate survival function for the distribution dist evaluated at {x1,x2,…}.
Details

- SurvivalFunction is also known as a complementary cumulative distribution function or a reliability function.
- SurvivalFunction[dist,x] gives the probability that an observed value is greater than x.
- SurvivalFunction[dist,x] is equivalent to Probability[ξ>x,ξ∈dist].
- SurvivalFunction[dist,{x1,…,xn}] is equivalent to Probability[ξ1>x1∧⋯∧ξn>xn,{ξ1,…,ξn}dist].
- SurvivalFunction[dist,x] is equivalent to 1-CDF[dist,x].
Examples
open allclose allBasic Examples (4)Summary of the most common use cases
A survival function for a continuous univariate distribution:

https://wolfram.com/xid/0jz5mj4qzw8ar2-yq67n


https://wolfram.com/xid/0jz5mj4qzw8ar2-b1cc59

A survival function for a discrete univariate distribution:

https://wolfram.com/xid/0jz5mj4qzw8ar2-caapo2


https://wolfram.com/xid/0jz5mj4qzw8ar2-cdcagg

A survival function for a continuous multivariate distribution:

https://wolfram.com/xid/0jz5mj4qzw8ar2-e3k6fw

A survival function for a discrete multivariate distribution:

https://wolfram.com/xid/0jz5mj4qzw8ar2-fpmd7v

Scope (23)Survey of the scope of standard use cases
Parametric Distributions (6)

https://wolfram.com/xid/0jz5mj4qzw8ar2-47vk1


https://wolfram.com/xid/0jz5mj4qzw8ar2-dvkmub

Obtain a machine-precision result:

https://wolfram.com/xid/0jz5mj4qzw8ar2-bcclkz

Obtain a result at any precision for a continuous distribution:

https://wolfram.com/xid/0jz5mj4qzw8ar2-bvzj50

Obtain a result at any precision for a discrete distribution with inexact parameters:

https://wolfram.com/xid/0jz5mj4qzw8ar2-c30oe4

Survival function for a multivariate distribution:

https://wolfram.com/xid/0jz5mj4qzw8ar2-oe4vdr

Obtain a symbolic expression for the survival function:

https://wolfram.com/xid/0jz5mj4qzw8ar2-bwuue7


https://wolfram.com/xid/0jz5mj4qzw8ar2-n7lmp

Nonparametric Distributions (4)
Survival function for nonparametric distributions:

https://wolfram.com/xid/0jz5mj4qzw8ar2-cy09q2

https://wolfram.com/xid/0jz5mj4qzw8ar2-decfbs


https://wolfram.com/xid/0jz5mj4qzw8ar2-c44dgq


https://wolfram.com/xid/0jz5mj4qzw8ar2-b7gkfh

Compare with the value for the underlying parametric distribution:

https://wolfram.com/xid/0jz5mj4qzw8ar2-laemrs

Plot the survival function for a histogram distribution:

https://wolfram.com/xid/0jz5mj4qzw8ar2-bezwuv

Closed form expression for the survival function of a kernel mixture distribution:

https://wolfram.com/xid/0jz5mj4qzw8ar2-dldvgo

Plot of the survival function of a bivariate smooth kernel distribution:

https://wolfram.com/xid/0jz5mj4qzw8ar2-d1pyr5

Derived Distributions (10)
Product of independent distributions:

https://wolfram.com/xid/0jz5mj4qzw8ar2-wkzb98

https://wolfram.com/xid/0jz5mj4qzw8ar2-8pyz0


https://wolfram.com/xid/0jz5mj4qzw8ar2-i185f

Component mixture distribution:

https://wolfram.com/xid/0jz5mj4qzw8ar2-zst18z

https://wolfram.com/xid/0jz5mj4qzw8ar2-g8oy2


https://wolfram.com/xid/0jz5mj4qzw8ar2-l97u83

Quadratic transformation of a discrete distribution:

https://wolfram.com/xid/0jz5mj4qzw8ar2-nog3b1

https://wolfram.com/xid/0jz5mj4qzw8ar2-qx2dx


https://wolfram.com/xid/0jz5mj4qzw8ar2-k0a3dq


https://wolfram.com/xid/0jz5mj4qzw8ar2-wzpdhu

https://wolfram.com/xid/0jz5mj4qzw8ar2-d2ukan

Compare survival function of the censored distribution with the original:

https://wolfram.com/xid/0jz5mj4qzw8ar2-sc32m


https://wolfram.com/xid/0jz5mj4qzw8ar2-2khkop

https://wolfram.com/xid/0jz5mj4qzw8ar2-b8ebyy

Compare survival function of the truncated distribution with the original:

https://wolfram.com/xid/0jz5mj4qzw8ar2-bnm6za

Parameter mixture distribution:

https://wolfram.com/xid/0jz5mj4qzw8ar2-8ncjcz

https://wolfram.com/xid/0jz5mj4qzw8ar2-bct2he


https://wolfram.com/xid/0jz5mj4qzw8ar2-ofva0y


https://wolfram.com/xid/0jz5mj4qzw8ar2-soi5ca

https://wolfram.com/xid/0jz5mj4qzw8ar2-o4vib6


https://wolfram.com/xid/0jz5mj4qzw8ar2-4j88yk

Formula distributions defined by its PDF:

https://wolfram.com/xid/0jz5mj4qzw8ar2-cqlvum

https://wolfram.com/xid/0jz5mj4qzw8ar2-few7li


https://wolfram.com/xid/0jz5mj4qzw8ar2-icgxr8

https://wolfram.com/xid/0jz5mj4qzw8ar2-ceb6ni

Defined by its survival function:

https://wolfram.com/xid/0jz5mj4qzw8ar2-eq1y4f

https://wolfram.com/xid/0jz5mj4qzw8ar2-hfkb2


https://wolfram.com/xid/0jz5mj4qzw8ar2-jneah

https://wolfram.com/xid/0jz5mj4qzw8ar2-gmxz4v

The survival function for QuantityDistribution assumes the argument is a Quantity with compatible units:

https://wolfram.com/xid/0jz5mj4qzw8ar2-z6cqh


https://wolfram.com/xid/0jz5mj4qzw8ar2-bjwd0p

This allows for direct quantity substitution:

https://wolfram.com/xid/0jz5mj4qzw8ar2-bs6882

Compare with the direct use of the quantity argument:

https://wolfram.com/xid/0jz5mj4qzw8ar2-kkvt7w

Random Processes (3)
Find the survival function for a SliceDistribution of a discrete-state random process:

https://wolfram.com/xid/0jz5mj4qzw8ar2-hha5jz


https://wolfram.com/xid/0jz5mj4qzw8ar2-ec193c

A continuous-state random process:

https://wolfram.com/xid/0jz5mj4qzw8ar2-cg4akz


https://wolfram.com/xid/0jz5mj4qzw8ar2-dzmz38

Find the multiple time-slice survival function for a discrete-state process:

https://wolfram.com/xid/0jz5mj4qzw8ar2-r98gn


https://wolfram.com/xid/0jz5mj4qzw8ar2-hlbkqt

A multi-slice for a continuous-state process:

https://wolfram.com/xid/0jz5mj4qzw8ar2-m37pj

Survival function for the StationaryDistribution of a discrete-state random process:

https://wolfram.com/xid/0jz5mj4qzw8ar2-mpszqf


https://wolfram.com/xid/0jz5mj4qzw8ar2-bdqzil

Generalizations & Extensions (1)Generalized and extended use cases
SurvivalFunction threads element-wise over lists:

https://wolfram.com/xid/0jz5mj4qzw8ar2-uxh42


https://wolfram.com/xid/0jz5mj4qzw8ar2-8hdoz


https://wolfram.com/xid/0jz5mj4qzw8ar2-en7mbd

Applications (2)Sample problems that can be solved with this function
Compute the probability of for a
distribution with 20 degrees of freedom:

https://wolfram.com/xid/0jz5mj4qzw8ar2-hksahd


https://wolfram.com/xid/0jz5mj4qzw8ar2-ct08dz

Compute the probability of for the same distribution:

https://wolfram.com/xid/0jz5mj4qzw8ar2-jhlkj6


https://wolfram.com/xid/0jz5mj4qzw8ar2-rfauio

Probability of getting at least one six in 6 throws of a regular six‐sided die:

https://wolfram.com/xid/0jz5mj4qzw8ar2-gfbgba

Probability of getting at least two sixes in 12 throws:

https://wolfram.com/xid/0jz5mj4qzw8ar2-po3qmr

Probability of getting at least three sixes in 18 throws:

https://wolfram.com/xid/0jz5mj4qzw8ar2-e6gp00

Getting at least one six in 6 throws is the most favorable bet:

https://wolfram.com/xid/0jz5mj4qzw8ar2-bnj8vq


https://wolfram.com/xid/0jz5mj4qzw8ar2-d5du0z

Properties & Relations (6)Properties of the function, and connections to other functions
The probability of for a continuous univariate distribution is given by SurvivalFunction:

https://wolfram.com/xid/0jz5mj4qzw8ar2-3se3v


https://wolfram.com/xid/0jz5mj4qzw8ar2-d1kk3s

The survival function has value 1 at and is 0 at
:

https://wolfram.com/xid/0jz5mj4qzw8ar2-e90ztq


https://wolfram.com/xid/0jz5mj4qzw8ar2-h48duv

The sum of the survival function and the CDF is 1:

https://wolfram.com/xid/0jz5mj4qzw8ar2-jqydpp


https://wolfram.com/xid/0jz5mj4qzw8ar2-dyrxg5


https://wolfram.com/xid/0jz5mj4qzw8ar2-igglac

SurvivalFunction and InverseSurvivalFunction are inverses for continuous distributions:

https://wolfram.com/xid/0jz5mj4qzw8ar2-g2gh3l

https://wolfram.com/xid/0jz5mj4qzw8ar2-cnefrj


https://wolfram.com/xid/0jz5mj4qzw8ar2-bdlj9l

Compositions of SurvivalFunction and InverseSurvivalFunction give step functions for a discrete distribution:

https://wolfram.com/xid/0jz5mj4qzw8ar2-e0tr3p

https://wolfram.com/xid/0jz5mj4qzw8ar2-itz2


https://wolfram.com/xid/0jz5mj4qzw8ar2-gpjnzr

Calculate the PDF of a continuous univariate distribution:

https://wolfram.com/xid/0jz5mj4qzw8ar2-k5jnts

https://wolfram.com/xid/0jz5mj4qzw8ar2-ya9mv

Possible Issues (2)Common pitfalls and unexpected behavior
Symbolic closed forms do not exist for some distributions:

https://wolfram.com/xid/0jz5mj4qzw8ar2-gtite


https://wolfram.com/xid/0jz5mj4qzw8ar2-k4p5g

Substitution of invalid values into symbolic outputs gives results that are not meaningful:

https://wolfram.com/xid/0jz5mj4qzw8ar2-w93

Passing it as an argument, it stays unevaluated:

https://wolfram.com/xid/0jz5mj4qzw8ar2-jt2z9

Wolfram Research (2010), SurvivalFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/SurvivalFunction.html.
Text
Wolfram Research (2010), SurvivalFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/SurvivalFunction.html.
Wolfram Research (2010), SurvivalFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/SurvivalFunction.html.
CMS
Wolfram Language. 2010. "SurvivalFunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SurvivalFunction.html.
Wolfram Language. 2010. "SurvivalFunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SurvivalFunction.html.
APA
Wolfram Language. (2010). SurvivalFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SurvivalFunction.html
Wolfram Language. (2010). SurvivalFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SurvivalFunction.html
BibTeX
@misc{reference.wolfram_2025_survivalfunction, author="Wolfram Research", title="{SurvivalFunction}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/SurvivalFunction.html}", note=[Accessed: 06-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_survivalfunction, organization={Wolfram Research}, title={SurvivalFunction}, year={2010}, url={https://reference.wolfram.com/language/ref/SurvivalFunction.html}, note=[Accessed: 06-April-2025
]}