SliceDistribution
✖
SliceDistribution
represents the joint distribution of process states at times t1<⋯<tk.
Details

- SliceDistribution[proc,t] can be entered as proc[t].
- SliceDistribution[proc,{t1,…,tk}] can be entered as proc[{t1,…,tk}].
- For a random process xproc, its state at time t is a random variable x[t]proc[t], and its state at times t1, …, tk is a random variable {x[t1],…,x[tk]}proc[{t1,…,tk}].
- SliceDistribution will simplify to known special distributions whenever possible.
- SliceDistribution can be used with such functions as Mean, CDF, and RandomVariate, etc.
Examples
open allclose allBasic Examples (3)Summary of the most common use cases
Find a univariate slice distribution of a PoissonProcess:

https://wolfram.com/xid/0c0osliun7nve-dh1n61

Find a bivariate slice distribution of a WienerProcess:

https://wolfram.com/xid/0c0osliun7nve-xogvga

Find a multivariate slice distribution of a moving-average time series:

https://wolfram.com/xid/0c0osliun7nve-4it02

It does not autoevaluate but behaves like a distribution:

https://wolfram.com/xid/0c0osliun7nve-cjrcx7

Scope (3)Survey of the scope of standard use cases
Slice distribution behaves like a distribution:

https://wolfram.com/xid/0c0osliun7nve-d7dr3y


https://wolfram.com/xid/0c0osliun7nve-l8ustk


https://wolfram.com/xid/0c0osliun7nve-ye0ir5


https://wolfram.com/xid/0c0osliun7nve-jd6hzl

Generate a set of pseudorandom numbers:

https://wolfram.com/xid/0c0osliun7nve-4u8npo


https://wolfram.com/xid/0c0osliun7nve-kxs8mv

Slice distribution may autoevaluate to known distributions:

https://wolfram.com/xid/0c0osliun7nve-7spis


https://wolfram.com/xid/0c0osliun7nve-h4pb4n


https://wolfram.com/xid/0c0osliun7nve-8ddxlr


https://wolfram.com/xid/0c0osliun7nve-g81x1v


https://wolfram.com/xid/0c0osliun7nve-4m9sc3


https://wolfram.com/xid/0c0osliun7nve-v8h92t


https://wolfram.com/xid/0c0osliun7nve-5n3nir


https://wolfram.com/xid/0c0osliun7nve-74llxu


https://wolfram.com/xid/0c0osliun7nve-htrfso


https://wolfram.com/xid/0c0osliun7nve-0khrrk


https://wolfram.com/xid/0c0osliun7nve-42pfim

Slice distribution for an M/M/ queue:

https://wolfram.com/xid/0c0osliun7nve-xpm09

https://wolfram.com/xid/0c0osliun7nve-mcrvhu

https://wolfram.com/xid/0c0osliun7nve-g7aiel


https://wolfram.com/xid/0c0osliun7nve-dph6fm

Cumulative distribution function:

https://wolfram.com/xid/0c0osliun7nve-gud1e

Mean of the slice distribution:

https://wolfram.com/xid/0c0osliun7nve-ghwos3

Find the limit of the mean as t approaches :

https://wolfram.com/xid/0c0osliun7nve-e0ha7c

This agrees with the mean of the corresponding StationaryDistribution:

https://wolfram.com/xid/0c0osliun7nve-b018gm

As well as the mean system size in the steady state:

https://wolfram.com/xid/0c0osliun7nve-hevbgs

Properties & Relations (2)Properties of the function, and connections to other functions
Slice distribution at infinity is StationaryDistribution:

https://wolfram.com/xid/0c0osliun7nve-nvlxxm


https://wolfram.com/xid/0c0osliun7nve-0olw08

Use implicit times for computing probabilities:

https://wolfram.com/xid/0c0osliun7nve-ml0csm

Obtain the same result using the slice distribution:

https://wolfram.com/xid/0c0osliun7nve-casj6p

Compute an expectation using implicit time in the variable x[t]:

https://wolfram.com/xid/0c0osliun7nve-drrgim

Obtain the same result using the slice distribution:

https://wolfram.com/xid/0c0osliun7nve-fdue9q

Possible Issues (1)Common pitfalls and unexpected behavior
For some continuous-time random processes, simulation of a slice distribution is not well defined:

https://wolfram.com/xid/0c0osliun7nve-rfs9le

https://wolfram.com/xid/0c0osliun7nve-kdqr36

The process path simulation between the origin and the end time depends on the choice of step:

https://wolfram.com/xid/0c0osliun7nve-us1z3r

The slice distribution simulations for a few step choices show the approximations of the exact slice distribution:

https://wolfram.com/xid/0c0osliun7nve-evl5nv

https://wolfram.com/xid/0c0osliun7nve-vskkdp

Wolfram Research (2012), SliceDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/SliceDistribution.html.
Text
Wolfram Research (2012), SliceDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/SliceDistribution.html.
Wolfram Research (2012), SliceDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/SliceDistribution.html.
CMS
Wolfram Language. 2012. "SliceDistribution." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SliceDistribution.html.
Wolfram Language. 2012. "SliceDistribution." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SliceDistribution.html.
APA
Wolfram Language. (2012). SliceDistribution. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SliceDistribution.html
Wolfram Language. (2012). SliceDistribution. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SliceDistribution.html
BibTeX
@misc{reference.wolfram_2025_slicedistribution, author="Wolfram Research", title="{SliceDistribution}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/SliceDistribution.html}", note=[Accessed: 29-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_slicedistribution, organization={Wolfram Research}, title={SliceDistribution}, year={2012}, url={https://reference.wolfram.com/language/ref/SliceDistribution.html}, note=[Accessed: 29-April-2025
]}