SurvivalFunction
✖
SurvivalFunction
詳細

- SurvivalFunctionは,相補累積分布関数あるいは信頼性関数としても知られている.
- SurvivalFunction[dist,x]は観測値が x より大きくなる確率を与える.
- SurvivalFunction[dist,x]はProbability[ξ>x,ξ∈dist]に等しい.
- SurvivalFunction[dist,{x1,…,xn}]はProbability[ξ1>x1∧⋯∧ξn>xn,{ξ1,…,ξn}dist]に等しい.
- SurvivalFunction[dist,x]は1-CDF[dist,x]に等しい.
例題
すべて開くすべて閉じる例 (4)基本的な使用例

https://wolfram.com/xid/0jz5mj4qzw8ar2-yq67n


https://wolfram.com/xid/0jz5mj4qzw8ar2-b1cc59


https://wolfram.com/xid/0jz5mj4qzw8ar2-caapo2


https://wolfram.com/xid/0jz5mj4qzw8ar2-cdcagg


https://wolfram.com/xid/0jz5mj4qzw8ar2-e3k6fw


https://wolfram.com/xid/0jz5mj4qzw8ar2-fpmd7v

スコープ (23)標準的な使用例のスコープの概要
パラメトリック分布 (6)

https://wolfram.com/xid/0jz5mj4qzw8ar2-47vk1


https://wolfram.com/xid/0jz5mj4qzw8ar2-dvkmub


https://wolfram.com/xid/0jz5mj4qzw8ar2-bcclkz


https://wolfram.com/xid/0jz5mj4qzw8ar2-bvzj50

厳密ではない母数を持つ離散分布について任意精度で結果を得る:

https://wolfram.com/xid/0jz5mj4qzw8ar2-c30oe4


https://wolfram.com/xid/0jz5mj4qzw8ar2-oe4vdr


https://wolfram.com/xid/0jz5mj4qzw8ar2-bwuue7


https://wolfram.com/xid/0jz5mj4qzw8ar2-n7lmp

ノンパラメトリック分布 (4)

https://wolfram.com/xid/0jz5mj4qzw8ar2-cy09q2

https://wolfram.com/xid/0jz5mj4qzw8ar2-decfbs


https://wolfram.com/xid/0jz5mj4qzw8ar2-c44dgq


https://wolfram.com/xid/0jz5mj4qzw8ar2-b7gkfh


https://wolfram.com/xid/0jz5mj4qzw8ar2-laemrs


https://wolfram.com/xid/0jz5mj4qzw8ar2-bezwuv


https://wolfram.com/xid/0jz5mj4qzw8ar2-dldvgo


https://wolfram.com/xid/0jz5mj4qzw8ar2-d1pyr5

派生分布 (10)

https://wolfram.com/xid/0jz5mj4qzw8ar2-wkzb98

https://wolfram.com/xid/0jz5mj4qzw8ar2-8pyz0


https://wolfram.com/xid/0jz5mj4qzw8ar2-i185f


https://wolfram.com/xid/0jz5mj4qzw8ar2-zst18z

https://wolfram.com/xid/0jz5mj4qzw8ar2-g8oy2


https://wolfram.com/xid/0jz5mj4qzw8ar2-l97u83


https://wolfram.com/xid/0jz5mj4qzw8ar2-nog3b1

https://wolfram.com/xid/0jz5mj4qzw8ar2-qx2dx


https://wolfram.com/xid/0jz5mj4qzw8ar2-k0a3dq


https://wolfram.com/xid/0jz5mj4qzw8ar2-wzpdhu

https://wolfram.com/xid/0jz5mj4qzw8ar2-d2ukan


https://wolfram.com/xid/0jz5mj4qzw8ar2-sc32m


https://wolfram.com/xid/0jz5mj4qzw8ar2-2khkop

https://wolfram.com/xid/0jz5mj4qzw8ar2-b8ebyy


https://wolfram.com/xid/0jz5mj4qzw8ar2-bnm6za


https://wolfram.com/xid/0jz5mj4qzw8ar2-8ncjcz

https://wolfram.com/xid/0jz5mj4qzw8ar2-bct2he


https://wolfram.com/xid/0jz5mj4qzw8ar2-ofva0y


https://wolfram.com/xid/0jz5mj4qzw8ar2-soi5ca

https://wolfram.com/xid/0jz5mj4qzw8ar2-o4vib6


https://wolfram.com/xid/0jz5mj4qzw8ar2-4j88yk


https://wolfram.com/xid/0jz5mj4qzw8ar2-cqlvum

https://wolfram.com/xid/0jz5mj4qzw8ar2-few7li


https://wolfram.com/xid/0jz5mj4qzw8ar2-icgxr8

https://wolfram.com/xid/0jz5mj4qzw8ar2-ceb6ni


https://wolfram.com/xid/0jz5mj4qzw8ar2-eq1y4f

https://wolfram.com/xid/0jz5mj4qzw8ar2-hfkb2


https://wolfram.com/xid/0jz5mj4qzw8ar2-jneah

https://wolfram.com/xid/0jz5mj4qzw8ar2-gmxz4v

QuantityDistributionの生存関数は,引数が互換単位を持ったQuantityであると仮定する:

https://wolfram.com/xid/0jz5mj4qzw8ar2-z6cqh


https://wolfram.com/xid/0jz5mj4qzw8ar2-bjwd0p


https://wolfram.com/xid/0jz5mj4qzw8ar2-bs6882


https://wolfram.com/xid/0jz5mj4qzw8ar2-kkvt7w

ランダム過程 (3)
離散状態ランダム過程のSliceDistributionについての生存関数を求める:

https://wolfram.com/xid/0jz5mj4qzw8ar2-hha5jz


https://wolfram.com/xid/0jz5mj4qzw8ar2-ec193c


https://wolfram.com/xid/0jz5mj4qzw8ar2-cg4akz


https://wolfram.com/xid/0jz5mj4qzw8ar2-dzmz38

離散状態過程について,複数の時間スライスを持つ生存関数を求める:

https://wolfram.com/xid/0jz5mj4qzw8ar2-r98gn


https://wolfram.com/xid/0jz5mj4qzw8ar2-hlbkqt


https://wolfram.com/xid/0jz5mj4qzw8ar2-m37pj

離散状態ランダム過程のStationaryDistributionについての生存関数:

https://wolfram.com/xid/0jz5mj4qzw8ar2-mpszqf


https://wolfram.com/xid/0jz5mj4qzw8ar2-bdqzil

一般化と拡張 (1)一般化および拡張された使用例
SurvivalFunctionは,要素単位でリストに縫い込まれる:

https://wolfram.com/xid/0jz5mj4qzw8ar2-uxh42


https://wolfram.com/xid/0jz5mj4qzw8ar2-8hdoz


https://wolfram.com/xid/0jz5mj4qzw8ar2-en7mbd

アプリケーション (2)この関数で解くことのできる問題の例

https://wolfram.com/xid/0jz5mj4qzw8ar2-hksahd


https://wolfram.com/xid/0jz5mj4qzw8ar2-ct08dz


https://wolfram.com/xid/0jz5mj4qzw8ar2-jhlkj6


https://wolfram.com/xid/0jz5mj4qzw8ar2-rfauio

正六面体のサイコロを6回投げた場合に,少なくとも1回6の目が出る確率:

https://wolfram.com/xid/0jz5mj4qzw8ar2-gfbgba


https://wolfram.com/xid/0jz5mj4qzw8ar2-po3qmr


https://wolfram.com/xid/0jz5mj4qzw8ar2-e6gp00

6回投げて少なくとも1回6の目を得るのが,最も見込みのある賭けである:

https://wolfram.com/xid/0jz5mj4qzw8ar2-bnj8vq


https://wolfram.com/xid/0jz5mj4qzw8ar2-d5du0z

特性と関係 (6)この関数の特性および他の関数との関係
一変量連続分布についての の確率はSurvivalFunctionで与えられる:

https://wolfram.com/xid/0jz5mj4qzw8ar2-3se3v


https://wolfram.com/xid/0jz5mj4qzw8ar2-d1kk3s


https://wolfram.com/xid/0jz5mj4qzw8ar2-e90ztq


https://wolfram.com/xid/0jz5mj4qzw8ar2-h48duv


https://wolfram.com/xid/0jz5mj4qzw8ar2-jqydpp


https://wolfram.com/xid/0jz5mj4qzw8ar2-dyrxg5


https://wolfram.com/xid/0jz5mj4qzw8ar2-igglac

SurvivalFunctionとInverseSurvivalFunctionは,連続分布については逆関数である:

https://wolfram.com/xid/0jz5mj4qzw8ar2-g2gh3l

https://wolfram.com/xid/0jz5mj4qzw8ar2-cnefrj


https://wolfram.com/xid/0jz5mj4qzw8ar2-bdlj9l

SurvivalFunctionとInverseSurvivalFunctionを合成すると離散分布のステップ関数ができる:

https://wolfram.com/xid/0jz5mj4qzw8ar2-e0tr3p

https://wolfram.com/xid/0jz5mj4qzw8ar2-itz2


https://wolfram.com/xid/0jz5mj4qzw8ar2-gpjnzr

一変量連続分布のPDFを計算する:

https://wolfram.com/xid/0jz5mj4qzw8ar2-k5jnts

https://wolfram.com/xid/0jz5mj4qzw8ar2-ya9mv

考えられる問題 (2)よく起る問題と予期しない動作

https://wolfram.com/xid/0jz5mj4qzw8ar2-gtite


https://wolfram.com/xid/0jz5mj4qzw8ar2-k4p5g


https://wolfram.com/xid/0jz5mj4qzw8ar2-w93


https://wolfram.com/xid/0jz5mj4qzw8ar2-jt2z9

Wolfram Research (2010), SurvivalFunction, Wolfram言語関数, https://reference.wolfram.com/language/ref/SurvivalFunction.html.
テキスト
Wolfram Research (2010), SurvivalFunction, Wolfram言語関数, https://reference.wolfram.com/language/ref/SurvivalFunction.html.
Wolfram Research (2010), SurvivalFunction, Wolfram言語関数, https://reference.wolfram.com/language/ref/SurvivalFunction.html.
CMS
Wolfram Language. 2010. "SurvivalFunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SurvivalFunction.html.
Wolfram Language. 2010. "SurvivalFunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SurvivalFunction.html.
APA
Wolfram Language. (2010). SurvivalFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SurvivalFunction.html
Wolfram Language. (2010). SurvivalFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SurvivalFunction.html
BibTeX
@misc{reference.wolfram_2025_survivalfunction, author="Wolfram Research", title="{SurvivalFunction}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/SurvivalFunction.html}", note=[Accessed: 07-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_survivalfunction, organization={Wolfram Research}, title={SurvivalFunction}, year={2010}, url={https://reference.wolfram.com/language/ref/SurvivalFunction.html}, note=[Accessed: 07-April-2025
]}