MantissaExponent

MantissaExponent[x]

gives a list containing the mantissa and exponent of a number x.

MantissaExponent[x,b]

gives the baseb mantissa and exponent of x.

Details

  • The mantissa always lies between and or and .
  • MantissaExponent works with exact as well as approximate numeric quantities.

Examples

open allclose all

Basic Examples  (1)

Scope  (4)

Integers:

Base 2:

Exact numeric quantities:

The precision of the mantissa will depend on the precision of the inputs:

Properties & Relations  (3)

The fundamental identity :

MantissaExponent is related to RealExponent:

If r=RealExponent[x,b] then e=TemplateBox[{r}, Floor]+1 and :

RealDigits gives the mantissa in terms of digits:

The mantissa is given by :

This is equal to the values given by MantissaExponent:

Wolfram Research (1991), MantissaExponent, Wolfram Language function, https://reference.wolfram.com/language/ref/MantissaExponent.html (updated 2002).

Text

Wolfram Research (1991), MantissaExponent, Wolfram Language function, https://reference.wolfram.com/language/ref/MantissaExponent.html (updated 2002).

CMS

Wolfram Language. 1991. "MantissaExponent." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2002. https://reference.wolfram.com/language/ref/MantissaExponent.html.

APA

Wolfram Language. (1991). MantissaExponent. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MantissaExponent.html

BibTeX

@misc{reference.wolfram_2024_mantissaexponent, author="Wolfram Research", title="{MantissaExponent}", year="2002", howpublished="\url{https://reference.wolfram.com/language/ref/MantissaExponent.html}", note=[Accessed: 02-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_mantissaexponent, organization={Wolfram Research}, title={MantissaExponent}, year={2002}, url={https://reference.wolfram.com/language/ref/MantissaExponent.html}, note=[Accessed: 02-January-2025 ]}