WeierstrassZeta
WeierstrassZeta[u,{g2,g3}]
gives the Weierstrass zeta function .
Details
- Mathematical function, suitable for both symbolic and numerical manipulation.
- WeierstrassZeta is related to WeierstrassP through the differential equation .
- WeierstrassZeta is not periodic and is therefore not strictly an elliptic function.
- For certain special arguments, WeierstrassZeta automatically evaluates to exact values.
- WeierstrassZeta can be evaluated to arbitrary numerical precision.
- WeierstrassZeta can be used with CenteredInterval objects. »
Examples
open allclose allBasic Examples (4)
Scope (30)
Numerical Evaluation (7)
The precision of the output tracks the precision of the input:
Evaluate efficiently at high precision:
WeierstrassZeta can be used with CenteredInterval objects:
Compute average case statistical intervals using Around:
Compute the elementwise values of an array:
Or compute the matrix WeierstrassZeta function using MatrixFunction:
Specific Values (3)
WeierstrassZeta automatically evaluates to simpler functions for certain parameters:
Find a value of x for which WeierstrassZeta[x,1/2,1/2]=3:
Visualization (2)
Plot the WeierstrassZeta function for various parameters:
Function Properties (10)
Real domain of WeierstrassZeta:
WeierstrassZeta is an odd function with respect to x:
WeierstrassZeta threads elementwise over lists in its first argument:
WeierstrassZeta is not an analytic function:
It has both singularities and discontinuities:
is neither nondecreasing nor nonincreasing:
is neither non-negative nor non-positive:
is neither convex nor concave:
TraditionalForm formatting:
Differentiation (2)
Integration (3)
Compute the indefinite integral using Integrate:
Series Expansions (3)
Find the Taylor expansion using Series:
Plots of the first three approximations around :
Find the series expansion for an arbitrary symbolic direction :
Applications (3)
The 2D equations of motion of two point-like vertices having closed trajectories:
Solve the equations numerically:
The system of coupled nonlinear differential equations for a heavy symmetric top:
The solutions can be expressed through Weierstrass sigma and zeta functions:
Numerically check the correctness of the solutions:
Compute the invariants corresponding to the lemniscatic case of the Weierstrass elliptic function, in which the ratio of the periods is :
Parameterization of the Chen–Gackstatter minimal surface in terms of Weierstrass functions:
Properties & Relations (5)
Derivatives of WeierstrassZeta:
WeierstrassZeta is an odd function:
WeierstrassZeta is quasi-periodic, with quasi-periods equal to periods of WeierstrassP:
Values of WeierstrassZeta at the half-periods of WeierstrassP:
Possible Issues (1)
Neat Examples (1)
Plot the quasi‐doubly periodic WeierstrassZeta over the complex plane:
Text
Wolfram Research (1996), WeierstrassZeta, Wolfram Language function, https://reference.wolfram.com/language/ref/WeierstrassZeta.html (updated 2023).
CMS
Wolfram Language. 1996. "WeierstrassZeta." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/WeierstrassZeta.html.
APA
Wolfram Language. (1996). WeierstrassZeta. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WeierstrassZeta.html