WOLFRAM SYSTEM MODELER

CubicInterpolation_Re

Cubic Hermite spline interpolation of the Reynolds number in transition regime of the Moody diagram (inverse formulation)

Wolfram Language

In[1]:=
SystemModel["Modelica.Fluid.Dissipation.Utilities.Functions.General.CubicInterpolation_Re"]
Out[1]:=

Information

This information is part of the Modelica Standard Library maintained by the Modelica Association.

Syntax

Re = CubicInterpolation_Re(0, Re1, Re2, Delta, lambda2);

Description

Function CubicInterpolation_Re(..) approximates the Reynolds number Re in the transition regime between laminar and turbulent flow of the Moody diagram by an inverse formulation of a cubic Hermite spline interpolation. See Modelica.Fluid.UsersGuide.ComponentDefinition.WallFriction (especially Region 2) for a detailed explanation.

Syntax

Re = CubicInterpolation_Re(Re_turbulent, Re1, Re2, Delta, lambda2)

Inputs (5)

Re_turbulent

Type: Real

Description: Unused input

Re1

Type: ReynoldsNumber

Description: Boundary Reynolds number for laminar regime

Re2

Type: ReynoldsNumber

Description: Boundary Reynolds number for turbulent regime

Delta

Type: Real

Description: Relative roughness

lambda2

Type: Real

Description: Modified friction coefficient (= independent variable)

Outputs (1)

Re

Type: ReynoldsNumber

Description: Interpolated Reynolds number in transition region

Revisions

2018-11-20 Stefan Wischhusen: Renamed function from CubicInterpolation_DP to CubicInterpolation_Re.