Mathematical Morphology

Combining methods from set theory, topology, and discrete mathematics, mathematical morphology provides a powerful approach to processing images and other discrete data. The Wolfram Language includes an extensive and efficient implementation of mathematical morphology, fully integrated with the Wolfram Language's general image and data processing.


Image Preparation

Binarize, MorphologicalBinarize convert any image to black and white

ColorNegate flip black and white

Basic Operations

Dilation  ▪  Erosion  ▪  Opening  ▪  Closing

Morphological Transforms

DistanceTransform  ▪  InverseDistanceTransform  ▪  HitMissTransform  ▪  TopHatTransform  ▪  BottomHatTransform

MinDetect  ▪  MaxDetect  ▪  FillingTransform

MorphologicalTransform general block-based binary morphological operation

MorphologicalGraph generate a graph from an image skeleton

Morphological Reconstruction

GeodesicDilation  ▪  GeodesicErosion  ▪  GeodesicClosing  ▪  GeodesicOpening

Morphological Analysis

SkeletonTransform  ▪  Thinning  ▪  Pruning  ▪  MorphologicalBranchPoints

MorphologicalEulerNumber  ▪  MorphologicalPerimeter

MorphologicalComponents identify connected components

CornerNeighbors option to specify neighborhood configuration

Component Analysis

ComponentMeasurements component shape and color analysis

SelectComponents  ▪  DeleteSmallComponents  ▪  DeleteBorderComponents

Colorize color every component differently

HighlightImage highlight region of interest

Translate this page: