computes an array of cepstra on data.


uses partitions of length n.


uses partitions with offset d.


applies a smoothing window wfun to each partition.

Details and Options

  • Cepstrogram is an array of power cepstra computed on partitions of data.
  • Power cepstrum for each partition is computed as the squared inverse Fourier transform of the log-power spectrum.
  • Use Cepstrogram to directly plot the array of cepstra.
  • The partition length n and offset d can be expressed as an integer number (interpreted as number of samples) or as time or sample quantities.
  • CepstrogramArray[list] uses partitions of length n=2^Round[InterpretationBox[{log, _, DocumentationBuild`Utils`Private`Parenth[2]}, Log2, AutoDelete -> True](sqrt(m))]+1 and offset Round[n/3], where m is Length[list].
  • In CepstrogramArray[list,n,d,wfun], the smoothing window wfun can be specified using a window function that will be sampled between and or a list of length n. The default window is DirichletWindow, which effectively does no smoothing.
  • The data can be any of the following:
  • listarbitrary rank numerical array
    audioan Audio or Sound object
  • For multichannel audio objects, the cepstrogram is computed over the sum of all channels.
  • The following options can be given:
  • FourierParameters{1,-1}Fourier parameters
    PaddingAutomaticpadding scheme
    PaddingSize{0,0}amount of padding


open allclose all

Basic Examples  (1)

Cepstrogram array of an audio signal:

Click for copyable input
Click for copyable input

Plot the cepstrogram:

Click for copyable input

Scope  (6)

See Also

Cepstrogram  SpectrogramArray  Spectrogram  PeriodogramArray  Periodogram

Introduced in 2017