DGaussianWavelet

DGaussianWavelet[]

represents a derivative of Gaussian wavelet of derivative order 2.

DGaussianWavelet[n]

represents a derivative of Gaussian wavelet of derivative order n.

Details

Examples

open allclose all

Basic Examples  (1)

Wavelet function:

Scope  (2)

DGaussianWavelet is used to perform ContinuousWaveletTransform:

Use WaveletScalogram to get a time scale representation of wavelet coefficients:

Use InverseWaveletTransform to reconstruct the signal:

Wavelet function as a function of derivative order n:

Properties & Relations  (4)

DGaussianWavelet[2] is the same as MexicanHatWavelet:

Wavelet function integrates to zero; :

Wavelet function and its Fourier transform:

DGaussianWavelet does not have a scaling function:

Wolfram Research (2010), DGaussianWavelet, Wolfram Language function, https://reference.wolfram.com/language/ref/DGaussianWavelet.html.

Text

Wolfram Research (2010), DGaussianWavelet, Wolfram Language function, https://reference.wolfram.com/language/ref/DGaussianWavelet.html.

CMS

Wolfram Language. 2010. "DGaussianWavelet." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/DGaussianWavelet.html.

APA

Wolfram Language. (2010). DGaussianWavelet. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DGaussianWavelet.html

BibTeX

@misc{reference.wolfram_2023_dgaussianwavelet, author="Wolfram Research", title="{DGaussianWavelet}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/DGaussianWavelet.html}", note=[Accessed: 19-March-2024 ]}

BibLaTeX

@online{reference.wolfram_2023_dgaussianwavelet, organization={Wolfram Research}, title={DGaussianWavelet}, year={2010}, url={https://reference.wolfram.com/language/ref/DGaussianWavelet.html}, note=[Accessed: 19-March-2024 ]}