HypergeometricU
✖
HypergeometricU
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- The function
has the integral representation
.
- HypergeometricU[a,b,z] has a branch cut discontinuity in the complex
plane running from
to
.
- For certain special arguments, HypergeometricU automatically evaluates to exact values.
- HypergeometricU can be evaluated to arbitrary numerical precision.
- HypergeometricU automatically threads over lists.
- HypergeometricU can be used with Interval and CenteredInterval objects. »
Examples
open allclose allBasic Examples (5)Summary of the most common use cases

https://wolfram.com/xid/0i1s959p5-e0aa4

Plot over a subset of the reals:

https://wolfram.com/xid/0i1s959p5-dizvcm

Plot over a subset of the complexes:

https://wolfram.com/xid/0i1s959p5-kiedlx

Series expansion at the origin:

https://wolfram.com/xid/0i1s959p5-mi5s5p

Series expansion at Infinity:

https://wolfram.com/xid/0i1s959p5-laddhh

Scope (39)Survey of the scope of standard use cases
Numerical Evaluation (5)

https://wolfram.com/xid/0i1s959p5-cz0ume

The precision of the output tracks the precision of the input:

https://wolfram.com/xid/0i1s959p5-dke9ki

Evaluate for complex arguments:

https://wolfram.com/xid/0i1s959p5-dkhrbz

Evaluate HypergeometricU efficiently at high precision:

https://wolfram.com/xid/0i1s959p5-di5gcr


https://wolfram.com/xid/0i1s959p5-bq2c6r

Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:

https://wolfram.com/xid/0i1s959p5-cmdnbi


https://wolfram.com/xid/0i1s959p5-cdcyeo

Or compute average-case statistical intervals using Around:

https://wolfram.com/xid/0i1s959p5-cw18bq

Compute the elementwise values of an array:

https://wolfram.com/xid/0i1s959p5-thgd2

Or compute the matrix HypergeometricU function using MatrixFunction:

https://wolfram.com/xid/0i1s959p5-o5jpo

Specific Values (3)
HypergeometricU automatically evaluates to simpler functions for certain parameters:

https://wolfram.com/xid/0i1s959p5-npdldt


https://wolfram.com/xid/0i1s959p5-ckqzfq


https://wolfram.com/xid/0i1s959p5-m0ibdd

Find a value of satisfying the equation
:

https://wolfram.com/xid/0i1s959p5-f2hrld


https://wolfram.com/xid/0i1s959p5-gyxup0

Visualization (3)
Plot the HypergeometricU function:

https://wolfram.com/xid/0i1s959p5-ecj8m7

Plot HypergeometricU as a function of its second parameter:

https://wolfram.com/xid/0i1s959p5-gq0e7


https://wolfram.com/xid/0i1s959p5-dqlpko


https://wolfram.com/xid/0i1s959p5-hhux8h

Function Properties (9)
Real domain of HypergeometricU:

https://wolfram.com/xid/0i1s959p5-i48j6x

Complex domain of HypergeometricU:

https://wolfram.com/xid/0i1s959p5-mbgh6u


https://wolfram.com/xid/0i1s959p5-dpcmbc

is neither non-decreasing nor non-increasing on its real domain:

https://wolfram.com/xid/0i1s959p5-elzs35


https://wolfram.com/xid/0i1s959p5-g54sqh


https://wolfram.com/xid/0i1s959p5-zf7zy


https://wolfram.com/xid/0i1s959p5-klmhpu


https://wolfram.com/xid/0i1s959p5-b5ts4n

is positive on its real domain:

https://wolfram.com/xid/0i1s959p5-bdbh0f

has both singularity and discontinuity for z≤0:

https://wolfram.com/xid/0i1s959p5-hl8oqu


https://wolfram.com/xid/0i1s959p5-counuv


https://wolfram.com/xid/0i1s959p5-ci2sbr

TraditionalForm formatting:

https://wolfram.com/xid/0i1s959p5-8fepb4

Differentiation (3)
Integration (3)
Indefinite integral HypergeometricU:

https://wolfram.com/xid/0i1s959p5-bponid

Definite integral of HypergeometricU:

https://wolfram.com/xid/0i1s959p5-byhut5


https://wolfram.com/xid/0i1s959p5-iuuysk


https://wolfram.com/xid/0i1s959p5-e2pjgn

Series Expansions (3)
Series expansion for HypergeometricU:

https://wolfram.com/xid/0i1s959p5-ewr1h8

Plot the first three approximations for around
:

https://wolfram.com/xid/0i1s959p5-binhar

Expand HypergeometricU in series around infinity:

https://wolfram.com/xid/0i1s959p5-b5ywvs

Apply HypergeometricU to a power series:

https://wolfram.com/xid/0i1s959p5-br74bf

Integral Transforms (3)
Compute the Laplace transform using LaplaceTransform:

https://wolfram.com/xid/0i1s959p5-lrm1i


https://wolfram.com/xid/0i1s959p5-byb4jh


https://wolfram.com/xid/0i1s959p5-bik34q

Function Identities and Simplifications (2)
Function Representations (5)

https://wolfram.com/xid/0i1s959p5-btrz2h

Representation through Gamma and Hypergeometric1F1:

https://wolfram.com/xid/0i1s959p5-jsway7

HypergeometricU can be represented in terms of MeijerG:

https://wolfram.com/xid/0i1s959p5-c3r3u


https://wolfram.com/xid/0i1s959p5-cqbusy

HypergeometricU can be represented as a DifferentialRoot:

https://wolfram.com/xid/0i1s959p5-xf52z

TraditionalForm formatting:

https://wolfram.com/xid/0i1s959p5-g0745t

Applications (3)Sample problems that can be solved with this function
Solve the confluent hypergeometric differential equation:

https://wolfram.com/xid/0i1s959p5-gi2zn

Borel summation of the divergent series for the function gives HypergeometricU:

https://wolfram.com/xid/0i1s959p5-cq97n4


https://wolfram.com/xid/0i1s959p5-dminu8

The same result can be obtained using the Regularization option of Sum:

https://wolfram.com/xid/0i1s959p5-idkg8w

Define distribution for scaled condition number of a WishartMatrixDistribution:

https://wolfram.com/xid/0i1s959p5-f8ju8d
Sample the scaled condition number of a large matrix and check that it agrees with asymptotic closed-form distribution:

https://wolfram.com/xid/0i1s959p5-dmxnus

https://wolfram.com/xid/0i1s959p5-dkrzl7

https://wolfram.com/xid/0i1s959p5-m5iijt

The asymptotic scaled condition number distribution has infinite mean:

https://wolfram.com/xid/0i1s959p5-52na7


https://wolfram.com/xid/0i1s959p5-f4gfmu

Properties & Relations (4)Properties of the function, and connections to other functions
Use FunctionExpand to expand HypergeometricU into simpler functions:

https://wolfram.com/xid/0i1s959p5-gcnabe


https://wolfram.com/xid/0i1s959p5-dpvijd

Integrate may give results involving HypergeometricU:

https://wolfram.com/xid/0i1s959p5-col0t5

HypergeometricU can be represented as a DifferentialRoot:

https://wolfram.com/xid/0i1s959p5-ddbh2

HypergeometricU can be represented as a DifferenceRoot:

https://wolfram.com/xid/0i1s959p5-cjx8vb


https://wolfram.com/xid/0i1s959p5-ojcks5

Possible Issues (1)Common pitfalls and unexpected behavior
The default setting of $MaxExtraPrecision can be insufficient to obtain requested precision:

https://wolfram.com/xid/0i1s959p5-mjshgb


A larger setting for $MaxExtraPrecision may be needed:

https://wolfram.com/xid/0i1s959p5-d6e6sm

Wolfram Research (1988), HypergeometricU, Wolfram Language function, https://reference.wolfram.com/language/ref/HypergeometricU.html (updated 2022).
Text
Wolfram Research (1988), HypergeometricU, Wolfram Language function, https://reference.wolfram.com/language/ref/HypergeometricU.html (updated 2022).
Wolfram Research (1988), HypergeometricU, Wolfram Language function, https://reference.wolfram.com/language/ref/HypergeometricU.html (updated 2022).
CMS
Wolfram Language. 1988. "HypergeometricU." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/HypergeometricU.html.
Wolfram Language. 1988. "HypergeometricU." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/HypergeometricU.html.
APA
Wolfram Language. (1988). HypergeometricU. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HypergeometricU.html
Wolfram Language. (1988). HypergeometricU. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HypergeometricU.html
BibTeX
@misc{reference.wolfram_2025_hypergeometricu, author="Wolfram Research", title="{HypergeometricU}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/HypergeometricU.html}", note=[Accessed: 13-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_hypergeometricu, organization={Wolfram Research}, title={HypergeometricU}, year={2022}, url={https://reference.wolfram.com/language/ref/HypergeometricU.html}, note=[Accessed: 13-April-2025
]}