gives a list of the decimal digits in the integer n.
IntegerDigits[n,b]
gives a list of the base b digits in the integer n.
IntegerDigits[n,b,len]
pads the list on the left with zeros to give a list of length len.
IntegerDigits[n,MixedRadix[blist]]
uses the mixed radix with list of bases blist.


IntegerDigits
gives a list of the decimal digits in the integer n.
IntegerDigits[n,b]
gives a list of the base b digits in the integer n.
IntegerDigits[n,b,len]
pads the list on the left with zeros to give a list of length len.
IntegerDigits[n,MixedRadix[blist]]
uses the mixed radix with list of bases blist.
Details

- IntegerDigits gives the most significant digit first, as in standard positional notation.
- IntegerDigits[n] discards the sign of n.
- If len is less than the number of digits in n, then the len least significant digits are returned.
- IntegerDigits[0] gives {0}.
- FromDigits can be used as the inverse of IntegerDigits.
Examples
open all close allBasic Examples (3)
Scope (8)
Bases larger than 10 can be used:
IntegerDigits threads itself over elements of lists:
Find the digits of 7 in different bases:
By default, IntegerDigits includes no leading zeros:
Pad all digit lists to be length 3:
Find digits using a MixedRadix specification:
Applications (4)
ChampernowneNumber has a decimal expansion that is a concatenation of consecutive integers:
Compare to ChampernowneNumber:
Construct a van der Corput sequence:
The sequence forms a dense set that is equidistributed in the unit interval:
Properties & Relations (4)
Find all combinations of 3 binary digits:
Pad digit lists to be the same length:
Express an amount of seconds in hours, minutes, and seconds:
It can also be obtained with NumberDecompose:
Perform the same computation using Quantity objects:
See Also
FromDigits IntegerString NumberExpand DigitCount IntegerLength DigitSum NumberDecompose RealDigits NumberDigit BaseForm NumberForm RomanNumeral IntegerReverse PalindromeQ IntegerExponent IntegerPart ContinuedFraction Tuples BitAnd BitOr BitLength
Function Repository: NthDigit GrayCode ToNegabinary BinaryCodedTernary
Related Links
- MathWorld
- An Elementary Introduction to the Wolfram Language : More about Numbers
- An Elementary Introduction to the Wolfram Language : Operations on Lists
- An Elementary Introduction to the Wolfram Language : Pure Anonymous Functions
- An Elementary Introduction to the Wolfram Language : Writing Good Code
- NKS|Online (A New Kind of Science)
History
Introduced in 1991 (2.0) | Updated in 1996 (3.0) ▪ 2003 (5.0) ▪ 2015 (10.2)
Text
Wolfram Research (1991), IntegerDigits, Wolfram Language function, https://reference.wolfram.com/language/ref/IntegerDigits.html (updated 2015).
CMS
Wolfram Language. 1991. "IntegerDigits." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/IntegerDigits.html.
APA
Wolfram Language. (1991). IntegerDigits. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/IntegerDigits.html
BibTeX
@misc{reference.wolfram_2025_integerdigits, author="Wolfram Research", title="{IntegerDigits}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/IntegerDigits.html}", note=[Accessed: 07-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_integerdigits, organization={Wolfram Research}, title={IntegerDigits}, year={2015}, url={https://reference.wolfram.com/language/ref/IntegerDigits.html}, note=[Accessed: 07-August-2025]}