StateSpaceModel

StateSpaceModel[{a, b, c, d}]
represents the standard state-space model with state matrix a, input matrix b, output matrix c, and transmission matrix d.

StateSpaceModel[{a, b, c, d, e}]
represents a descriptor state-space model with descriptor matrix e.

StateSpaceModel[tfm]
gives a state-space realization of a TransferFunctionModel tfm.

StateSpaceModel[{f, g}, {{x1, x10}, ...}, {{u1, u10}, ...}]
gives the state-space model obtained by Taylor linearization of , or , about the point .

StateSpaceModel[eqns, {{x1, x10}, ...}, {{u1, u10}, ...}, {g1, ...}, ]
gives the state-space model obtained by Taylor linearization about the point of the differential or difference equations eqns with outputs and independent variable .

Details and OptionsDetails and Options

  • StateSpaceModel can represent scalar and multivariate systems in continuous or discrete time.
  • Time delays can be represented in any state-space model, by using SystemsModelDelay in any of the matrices.
  • A continuous-time system modeled by the equations with states , control inputs , and outputs can be specified as StateSpaceModel[{a, b, c, d}].
  • A discrete-time system modeled by the equations with states , control inputs , outputs , and sampling period can be specified as StateSpaceModel[{a, b, c, d}, SamplingPeriod->].
  • Continuous-time and discrete-time descriptor state-space systems can be specified as follows:
  • StateSpaceModel[{a,b,c,d,e}]
    StateSpaceModel[{a,b,c,d,e},SamplingPeriod->]
  • For a system with n states, p inputs, and q outputs, the matrices a, b, c, d and e should have dimensions , , , , and .
  • The following short inputs can be used:
  • StateSpaceModel[{a,b,c}]
    StateSpaceModel[{a,b}]
    StateSpaceModel[{a,b,c,Automatic,e}]e.x'(t)=a.x(t)+b.u(t), y(t)=c.x(t)
    StateSpaceModel[{a,b,Automatic,Automatic,e}]e.x'(t)=a.x(t)+b.u(t), y(t)=x(t)
  • For equational input, default linearization points and are taken to be zero.
  • The following options can be given:
  • SamplingPeriodNonethe sampling period
    StateSpaceRealizationAutomaticthe canonical realization
    DescriptorStateSpaceAutomaticstandard or descriptor realization
    SystemsModelLabelsNonethe labels for the input, output, and state variables
  • When converting from transfer-function model tfm, the controllable realization is used.

ExamplesExamplesopen allclose all

Basic Examples (5)Basic Examples (5)

A state-space model of an integrator:

In[1]:=
Click for copyable input
Out[1]=

A second-order single-input, single-output system:

In[1]:=
Click for copyable input
Out[1]=

The state-space model of a transfer-function object:

In[1]:=
Click for copyable input
Out[1]=

The state-space model of a system with sampling period :

In[1]:=
Click for copyable input
Out[1]=

The state-space model of a set of ODEs:

In[1]:=
Click for copyable input
Out[1]=
New in 8 | Last modified in 9
New to Mathematica? Find your learning path »
Have a question? Ask support »