Combinatorica`
Combinatorica`

Dijkstra

As of Version 10, most of the functionality of the Combinatorica package is built into the Wolfram System. »

Dijkstra[g,v]

gives a shortest-path spanning tree and associated distances from vertex v of graph g. The shortest-path spanning tree is given by a list in which element is the predecessor of vertex in the shortest-path spanning tree. Dijkstra does not work correctly when the edge weights are negative; BellmanFord should be used in this case.

Details

Wolfram Research (2012), Dijkstra, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/Dijkstra.html.

Text

Wolfram Research (2012), Dijkstra, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/Dijkstra.html.

BibTeX

@misc{reference.wolfram_2020_dijkstra, author="Wolfram Research", title="{Dijkstra}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/Dijkstra.html}", note=[Accessed: 15-April-2021 ]}

BibLaTeX

@online{reference.wolfram_2020_dijkstra, organization={Wolfram Research}, title={Dijkstra}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/Dijkstra.html}, note=[Accessed: 15-April-2021 ]}

CMS

Wolfram Language. 2012. "Dijkstra." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/Dijkstra.html.

APA

Wolfram Language. (2012). Dijkstra. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/Dijkstra.html