Combinatorica`
Combinatorica`

ShortestPathSpanningTree

As of Version 10, most of the functionality of the Combinatorica package is built into the Wolfram System. »

ShortestPathSpanningTree[g,v]

constructs a shortest-path spanning tree rooted at v, so that a shortest path in graph g from v to any other vertex is a path in the tree.

Details

Examples

Basic Examples  (2)

ShortestPathSpanningTree has been superseded by FindSpanningTree:

Wolfram Research (2012), ShortestPathSpanningTree, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/ShortestPathSpanningTree.html.

Text

Wolfram Research (2012), ShortestPathSpanningTree, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/ShortestPathSpanningTree.html.

BibTeX

@misc{reference.wolfram_2021_shortestpathspanningtree, author="Wolfram Research", title="{ShortestPathSpanningTree}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/ShortestPathSpanningTree.html}", note=[Accessed: 30-November-2021 ]}

BibLaTeX

@online{reference.wolfram_2021_shortestpathspanningtree, organization={Wolfram Research}, title={ShortestPathSpanningTree}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/ShortestPathSpanningTree.html}, note=[Accessed: 30-November-2021 ]}

CMS

Wolfram Language. 2012. "ShortestPathSpanningTree." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/ShortestPathSpanningTree.html.

APA

Wolfram Language. (2012). ShortestPathSpanningTree. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/ShortestPathSpanningTree.html