Combinatorica`
Combinatorica`

MinimumSpanningTree

As of Version 10, most of the functionality of the Combinatorica package is built into the Wolfram System. »

MinimumSpanningTree[g]

uses Kruskal's algorithm to find a minimum spanning tree of graph g.

Details and Options

Examples

Basic Examples  (2)

MinimumSpanningTree has been superseded by FindSpanningTree:

Wolfram Research (2012), MinimumSpanningTree, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/MinimumSpanningTree.html.

Text

Wolfram Research (2012), MinimumSpanningTree, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/MinimumSpanningTree.html.

CMS

Wolfram Language. 2012. "MinimumSpanningTree." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/MinimumSpanningTree.html.

APA

Wolfram Language. (2012). MinimumSpanningTree. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/MinimumSpanningTree.html

BibTeX

@misc{reference.wolfram_2024_minimumspanningtree, author="Wolfram Research", title="{MinimumSpanningTree}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/MinimumSpanningTree.html}", note=[Accessed: 05-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_minimumspanningtree, organization={Wolfram Research}, title={MinimumSpanningTree}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/MinimumSpanningTree.html}, note=[Accessed: 05-November-2024 ]}