MultivariateStatistics`
MultivariateStatistics`

# MultivariateMeanDeviation

MultivariateMeanDeviation[matrix]

gives the mean of the Euclidean distances between the elements of matrix and their mean.

# Details and Options

• To use MultivariateMeanDeviation, you first need to load the Multivariate Statistics Package using Needs["MultivariateStatistics`"].
• MultivariateMeanDeviation is a univariate measure of mean deviation for multivariate data.
• The multivariate mean deviation is given by iNorm[xi-], where matrix={x1,x2,,xn} and =Mean[matrix].
• MultivariateMeanDeviation handles both numerical and symbolic data.

# Examples

## Basic Examples(1)

Multivariate mean deviation for bivariate data:

Wolfram Research (2007), MultivariateMeanDeviation, Wolfram Language function, https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateMeanDeviation.html.

#### Text

Wolfram Research (2007), MultivariateMeanDeviation, Wolfram Language function, https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateMeanDeviation.html.

#### CMS

Wolfram Language. 2007. "MultivariateMeanDeviation." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateMeanDeviation.html.

#### APA

Wolfram Language. (2007). MultivariateMeanDeviation. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateMeanDeviation.html

#### BibTeX

@misc{reference.wolfram_2024_multivariatemeandeviation, author="Wolfram Research", title="{MultivariateMeanDeviation}", year="2007", howpublished="\url{https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateMeanDeviation.html}", note=[Accessed: 25-July-2024 ]}

#### BibLaTeX

@online{reference.wolfram_2024_multivariatemeandeviation, organization={Wolfram Research}, title={MultivariateMeanDeviation}, year={2007}, url={https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateMeanDeviation.html}, note=[Accessed: 25-July-2024 ]}