MultivariateStatistics`
MultivariateStatistics`

# MultivariateMedianDeviation

MultivariateMedianDeviation[matrix]

gives the median Euclidean distance from the median of the elements in matrix.

# Details and Options

• To use MultivariateMedianDeviation, you first need to load the Multivariate Statistics Package using Needs["MultivariateStatistics`"].
• MultivariateMedianDeviation is a univariate measure of median deviation for multivariate data.
• The multivariate median deviation is given by the median of the list {Norm[x1-],Norm[x2-],}, where matrix={x1,x2,,xn} and is the median of matrix.
• The following option can be given:
•  MedianMethod Median the median to use
• Valid settings for MedianMethod are Median, SimplexMedian, ConvexHullMedian, and SpatialMedian.

# Examples

open allclose all

## Basic Examples(1)

Multivariate median deviation for bivariate data:

## Options(1)

### MedianMethod(1)

Multivariate median deviation using a simplex median:

Wolfram Research (2007), MultivariateMedianDeviation, Wolfram Language function, https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateMedianDeviation.html.

#### Text

Wolfram Research (2007), MultivariateMedianDeviation, Wolfram Language function, https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateMedianDeviation.html.

#### CMS

Wolfram Language. 2007. "MultivariateMedianDeviation." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateMedianDeviation.html.

#### APA

Wolfram Language. (2007). MultivariateMedianDeviation. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateMedianDeviation.html

#### BibTeX

@misc{reference.wolfram_2024_multivariatemediandeviation, author="Wolfram Research", title="{MultivariateMedianDeviation}", year="2007", howpublished="\url{https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateMedianDeviation.html}", note=[Accessed: 25-July-2024 ]}

#### BibLaTeX

@online{reference.wolfram_2024_multivariatemediandeviation, organization={Wolfram Research}, title={MultivariateMedianDeviation}, year={2007}, url={https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateMedianDeviation.html}, note=[Accessed: 25-July-2024 ]}