gives the number of decimal digits of precision used for machineprecision numbers.



open allclose all

Basic Examples  (1)

Hardware machine precision used for floating point computation:

Scope  (1)

Machine number approximating :

Arbitrary precision number approximating with the same precision as machine numbers:

Applications  (1)

Make sure computations are carried out with the same precision as machine numbers:

Without fixing the precision, the resulting precision may be lower:

Properties & Relations  (3)

$MachinePrecision evaluates to a number while MachinePrecision is a numerical constant:

$MachinePrecision is numerically Equal to MachinePrecision:

$MachinePrecision is the machine precision approximation to MachinePrecision:

Numbers with just a few digits entered are assumed to have machine precision:

Precision is based on the number of digits when more than $MachinePrecision+1 are entered:

$MachinePrecision times the number of bits per digit gives the binary machine precision:

Possible Issues  (1)

$MachinePrecision uses arbitrary precision computations with machine precision resolution:

MachinePrecision uses machine number computations:

Introduced in 1991
Updated in 2003