# \$MaxMachineNumber

is the largest machineprecision number that can be used on a particular computer system.

# Details

• Numbers larger than \$MaxMachineNumber are always represented in arbitraryprecision form.
• \$MaxMachineNumber is typically 2n, where n is the maximum exponent that can be used in the internal representation of machineprecision numbers.

# Examples

open allclose all

## Basic Examples(1)

The largest hardware floating point number:

## Scope(2)

Numbers larger than \$MaxMachineNumber are represented as arbitrary precision numbers:

Find the maximum machine number algorithmatically:

## Properties & Relations(2)

\$MaxMachineNumber has the largest possible binary exponent and all bits set to 1:

\$MaxMachineNumber×\$MinMachineNumber is 4.×(1.-\$MachineEpsilon/2):

Wolfram Research (1991), \$MaxMachineNumber, Wolfram Language function, https://reference.wolfram.com/language/ref/\$MaxMachineNumber.html.

#### Text

Wolfram Research (1991), \$MaxMachineNumber, Wolfram Language function, https://reference.wolfram.com/language/ref/\$MaxMachineNumber.html.

#### CMS

Wolfram Language. 1991. "\$MaxMachineNumber." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/\$MaxMachineNumber.html.

#### APA

Wolfram Language. (1991). \$MaxMachineNumber. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/\$MaxMachineNumber.html

#### BibTeX

@misc{reference.wolfram_2024_\$maxmachinenumber, author="Wolfram Research", title="{\$MaxMachineNumber}", year="1991", howpublished="\url{https://reference.wolfram.com/language/ref/\$MaxMachineNumber.html}", note=[Accessed: 14-July-2024 ]}

#### BibLaTeX

@online{reference.wolfram_2024_\$maxmachinenumber, organization={Wolfram Research}, title={\$MaxMachineNumber}, year={1991}, url={https://reference.wolfram.com/language/ref/\$MaxMachineNumber.html}, note=[Accessed: 14-July-2024 ]}