$MaxNumber

$MaxNumber

gives the maximum arbitraryprecision number that can be represented on a particular computer system.

Details

Examples

open allclose all

Basic Examples  (2)

The maximum number representable on this computer system:

Larger numbers yield overflows:

Properties & Relations  (3)

$MaxNumber has the maximal possible exponent and all significant bits set to 1:

$MaxNumber×$MinNumber is approximately 1:

$MaxNumber is not a machine number:

It does have precision equivalent to that of machine numbers:

Wolfram Research (1996), $MaxNumber, Wolfram Language function, https://reference.wolfram.com/language/ref/$MaxNumber.html.

Text

Wolfram Research (1996), $MaxNumber, Wolfram Language function, https://reference.wolfram.com/language/ref/$MaxNumber.html.

BibTeX

@misc{reference.wolfram_2020_$maxnumber, author="Wolfram Research", title="{$MaxNumber}", year="1996", howpublished="\url{https://reference.wolfram.com/language/ref/$MaxNumber.html}", note=[Accessed: 21-April-2021 ]}

BibLaTeX

@online{reference.wolfram_2020_$maxnumber, organization={Wolfram Research}, title={$MaxNumber}, year={1996}, url={https://reference.wolfram.com/language/ref/$MaxNumber.html}, note=[Accessed: 21-April-2021 ]}

CMS

Wolfram Language. 1996. "$MaxNumber." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/$MaxNumber.html.

APA

Wolfram Language. (1996). $MaxNumber. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/$MaxNumber.html