AngleBisector

AngleBisector[{q1,p,q2}]

gives the bisector of the interior angle at p formed by the triangle with vertex points p, q1 and q2.

AngleBisector[{q1,p,q2},"type"]

gives the angle bisector of the specified type.

Details

Examples

open allclose all

Basic Examples  (1)

Calculate an angle bisector:

Scope  (2)

Find an interior angle bisector:

Find an exterior angle bisector:

Properties & Relations  (4)

AngleBisector finds the interior angle bisector by default:

The angle bisector divides the angle into two equal angles:

The exterior angle bisector divides the exterior angle into two equal angles:

TriangleConstruct[{a,b,c},"AngleBisector"] is equivalent to AngleBisector[{a,b,c}]:

Possible Issues  (2)

The three points must be distinct:

AngleBisector only works in 2D:

Wolfram Research (2019), AngleBisector, Wolfram Language function, https://reference.wolfram.com/language/ref/AngleBisector.html.

Text

Wolfram Research (2019), AngleBisector, Wolfram Language function, https://reference.wolfram.com/language/ref/AngleBisector.html.

CMS

Wolfram Language. 2019. "AngleBisector." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/AngleBisector.html.

APA

Wolfram Language. (2019). AngleBisector. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/AngleBisector.html

BibTeX

@misc{reference.wolfram_2024_anglebisector, author="Wolfram Research", title="{AngleBisector}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/AngleBisector.html}", note=[Accessed: 21-December-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_anglebisector, organization={Wolfram Research}, title={AngleBisector}, year={2019}, url={https://reference.wolfram.com/language/ref/AngleBisector.html}, note=[Accessed: 21-December-2024 ]}